Natural image processing in the visual cortex
视觉皮层的自然图像处理
基本信息
- 批准号:10675095
- 负责人:
- 金额:$ 41.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAreaComplexDependenceDevelopmentEnvironmentExperimental DesignsGoalsImageImpairmentIndividualKnowledgeLocationMacacaMachine LearningMeasurementMeasuresMental disordersModelingMonkeysMotionNeurodevelopmental DisorderNeuronsPerceptionPopulationProcessPropertyPublicationsRecording of previous eventsSamplingSensorySignal TransductionStimulusStructureTechnologyTestingTimeV1 neuronVisionVisualVisual CortexWorkarea striataawakecomputer frameworkexperienceexperimental studyimage processingimprovedmodel developmentmovieneglectneuralpatient populationresponsesensory cortexsensory inputspatiotemporalstatisticstheoriesvision sciencevisual information
项目摘要
Project Summary
Signals from the natural environment are processed by neuronal populations in the cortex. Understanding the
relationship between those signals and cortical activity is central to understanding normal cortical function and
how it is impaired in psychiatric and neurodevelopmental disorders. Substantial progress has been made in
elucidating cortical processing of simple, parametric stimuli, and computational technology is improving
descriptions of neural responses to naturalistic stimuli. However, how cortical populations encode the complex,
natural inputs received during every day perceptual experience is largely unknown. This project aims to
elucidate how natural visual inputs are represented by neuronal populations in primary visual cortex (V1).
Progress to date has been limited primarily by two factors. First, during natural vision, the inputs to V1 neurons
are always embedded in a spatial and temporal context, but how V1 integrates this contextual information in
natural visual inputs is poorly understood. Second, prior work focused almost exclusively on single-neuron
firing rate, but to understand cortical representations one must consider the structure of population activity—
the substantial trial-to-trial variability that is shared among neurons and evolves dynamically—as this structure
influences population information and perception. The central hypothesis of this project is that cortical
response structure is modulated by visual context to approximate an optimal representation of natural visual
inputs. To test the hypothesis, this project combines machine learning to quantify the statistical properties of
natural visual inputs, with a theory of how cortical populations should encode those images to achieve an
optimal representation, to arrive at concrete, falsifiable predictions for V1 response structure. The predictions
will be tested with measurements of population activity in V1 of awake monkeys viewing natural images and
movies. Specific Aim 1 will determine whether modulation of V1 response structure by spatial context in static
images is consistent with optimal encoding of those images, and will compare the predictive power of the
proposed model to alternative models. Specific Aim 2 addresses V1 encoding of dynamic natural inputs, and
will test whether modulation of V1 activity by temporal context is tuned to the temporal structure of natural
sensory signals, as required for optimality. As both spatial and temporal are present simultaneously during
natural vision, Specific Aim 3 will determine visual input statistics in free-viewing animals, and test space-time
interactions in V1 activity evoked by those inputs. This project will provide the first test of a unified functional
theory of contextual modulation in V1 encoding of natural visual inputs, and shed light on key aspects of
natural vision that have been neglected to date.
项目摘要
来自自然环境的信号由皮层中的神经元群体处理。了解
这些信号和皮质活动之间的关系是理解正常皮质功能的核心,
它是如何在精神和神经发育障碍中受损的。取得实质性进展
阐明简单、参数刺激和计算技术的皮层处理正在改善
对自然主义刺激的神经反应的描述。然而,皮质群如何编码复合物,
在每天的感知体验中接收到的自然输入在很大程度上是未知的。该项目旨在
阐明自然视觉输入是如何由初级视觉皮层(V1)的神经元群表示的。
迄今取得的进展主要受到两个因素的限制。首先,在自然视觉中,V1神经元的输入
总是嵌入在一个空间和时间的背景下,但如何V1整合这种上下文信息,
人们对自然的视觉输入知之甚少。其次,以前的工作几乎完全集中在单神经元上,
放电率,但要了解皮层代表必须考虑人口活动的结构-
神经元之间共享的大量试验与试验的可变性,
影响人口的信息和看法。这个项目的核心假设是,
响应结构由视觉上下文调制,以近似自然视觉的最佳表示
输入。为了验证这一假设,该项目结合机器学习来量化
自然的视觉输入,与理论的皮质人口应该如何编码这些图像,以实现一个
最佳表示,以达到具体的,可证伪的预测V1响应结构。的预测
将通过测量清醒猴子观看自然图像的V1中的群体活动进行测试,
电影具体目标1将确定静态环境中空间背景对V1反应结构的调制是否
图像与这些图像的最佳编码一致,并且将比较
替代模型的替代模型。具体目标2解决了动态自然输入的V1编码,以及
将测试是否调制V1活动的时间背景是调谐到时间结构的自然
感官信号,这是最优性所需的。由于空间和时间同时存在,
自然视觉,特定目标3将确定自由观察动物的视觉输入统计数据,并测试时空
这些输入引起的V1活动中的相互作用。该项目将提供一个统一的功能的第一个测试
自然视觉输入的V1编码中的上下文调制理论,并阐明了
自然视觉是迄今为止被忽视的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring uncertainty in human visual segmentation.
- DOI:10.1371/journal.pcbi.1011483
- 发表时间:2023-09
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
Modeling the diverse effects of divisive normalization on noise correlations.
- DOI:10.1371/journal.pcbi.1011667
- 发表时间:2023-11
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben Coen-Cagli其他文献
Ruben Coen-Cagli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben Coen-Cagli', 18)}}的其他基金
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
10231148 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
9916219 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
10018924 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 41.75万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 41.75万 - 项目类别:
Training Grant