Natural image processing in the visual cortex
视觉皮层的自然图像处理
基本信息
- 批准号:10018026
- 负责人:
- 金额:$ 41.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal TestingAreaComplexDependenceDevelopmentEnvironmentExperimental DesignsGoalsImageImpairmentIndividualKnowledgeLightLocationMacacaMachine LearningMeasurementMeasuresMental disordersModelingMonkeysMotionNeurodevelopmental DisorderNeuronsPerceptionPopulationProcessPropertyPublicationsRecording of previous eventsSamplingSensorySignal TransductionStimulusStructureTechnologyTestingTimeV1 neuronVisionVisualVisual CortexWorkarea striataawakebasecomputer frameworkexperienceexperimental studyimage processingimprovedmodel developmentmovieneglectpatient populationrelating to nervous systemresponsesensory inputspatiotemporalstatisticstheoriesvision sciencevisual information
项目摘要
Project Summary
Signals from the natural environment are processed by neuronal populations in the cortex. Understanding the
relationship between those signals and cortical activity is central to understanding normal cortical function and
how it is impaired in psychiatric and neurodevelopmental disorders. Substantial progress has been made in
elucidating cortical processing of simple, parametric stimuli, and computational technology is improving
descriptions of neural responses to naturalistic stimuli. However, how cortical populations encode the complex,
natural inputs received during every day perceptual experience is largely unknown. This project aims to
elucidate how natural visual inputs are represented by neuronal populations in primary visual cortex (V1).
Progress to date has been limited primarily by two factors. First, during natural vision, the inputs to V1 neurons
are always embedded in a spatial and temporal context, but how V1 integrates this contextual information in
natural visual inputs is poorly understood. Second, prior work focused almost exclusively on single-neuron
firing rate, but to understand cortical representations one must consider the structure of population activity—
the substantial trial-to-trial variability that is shared among neurons and evolves dynamically—as this structure
influences population information and perception. The central hypothesis of this project is that cortical
response structure is modulated by visual context to approximate an optimal representation of natural visual
inputs. To test the hypothesis, this project combines machine learning to quantify the statistical properties of
natural visual inputs, with a theory of how cortical populations should encode those images to achieve an
optimal representation, to arrive at concrete, falsifiable predictions for V1 response structure. The predictions
will be tested with measurements of population activity in V1 of awake monkeys viewing natural images and
movies. Specific Aim 1 will determine whether modulation of V1 response structure by spatial context in static
images is consistent with optimal encoding of those images, and will compare the predictive power of the
proposed model to alternative models. Specific Aim 2 addresses V1 encoding of dynamic natural inputs, and
will test whether modulation of V1 activity by temporal context is tuned to the temporal structure of natural
sensory signals, as required for optimality. As both spatial and temporal are present simultaneously during
natural vision, Specific Aim 3 will determine visual input statistics in free-viewing animals, and test space-time
interactions in V1 activity evoked by those inputs. This project will provide the first test of a unified functional
theory of contextual modulation in V1 encoding of natural visual inputs, and shed light on key aspects of
natural vision that have been neglected to date.
项目摘要
来自自然环境的信号由皮层中的神经元群体处理。了解
这些信号和皮质活动之间的关系是理解正常皮质功能的核心,
它是如何在精神和神经发育障碍中受损的。取得实质性进展
阐明简单、参数刺激和计算技术的皮层处理正在改善
对自然主义刺激的神经反应的描述。然而,皮质群如何编码复合物,
在每天的感知体验中接收到的自然输入在很大程度上是未知的。该项目旨在
阐明自然视觉输入是如何由初级视觉皮层(V1)的神经元群表示的。
迄今取得的进展主要受到两个因素的限制。首先,在自然视觉中,V1神经元的输入
总是嵌入在一个空间和时间的背景下,但如何V1整合这种上下文信息,
人们对自然的视觉输入知之甚少。其次,以前的工作几乎完全集中在单神经元上,
放电率,但要了解皮层代表必须考虑人口活动的结构-
神经元之间共享的大量试验与试验的可变性,
影响人口的信息和看法。这个项目的核心假设是,
响应结构由视觉上下文调制,以近似自然视觉的最佳表示
输入。为了验证这一假设,该项目结合机器学习来量化
自然的视觉输入,与理论的皮质人口应该如何编码这些图像,以实现一个
最佳表示,以达到具体的,可证伪的预测V1响应结构。的预测
将通过测量清醒猴子观看自然图像的V1中的群体活动进行测试,
电影具体目标1将确定静态环境中空间背景是否对V1反应结构进行调制
图像与这些图像的最佳编码一致,并且将比较
替代模型的替代模型。具体目标2解决了动态自然输入的V1编码,以及
将测试是否调制V1活动的时间背景是调谐到时间结构的自然
感官信号,这是最优性所需的。由于空间和时间同时存在,
自然视觉,特定目标3将确定自由观察动物的视觉输入统计数据,并测试时空
这些输入引起的V1活动中的相互作用。该项目将提供一个统一的功能的第一个测试
自然视觉输入的V1编码中的上下文调制理论,并阐明了
自然视觉是迄今为止被忽视的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben Coen-Cagli其他文献
Ruben Coen-Cagli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben Coen-Cagli', 18)}}的其他基金
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
10231148 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
9916219 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
10018924 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
相似海外基金
Bioreactors to Replace Animal Testing in Bone Research
生物反应器取代骨骼研究中的动物测试
- 批准号:
NC/Y500562/1 - 财政年份:2024
- 资助金额:
$ 41.75万 - 项目类别:
Training Grant
Animal testing of RNA aptamers as ALS drug candidate
RNA适体作为ALS候选药物的动物试验
- 批准号:
10453877 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Implementation and Evaluation of Two SARS-CoV-2 Assays for Companion Animal Testing to Expand Vet-LIRN COVID-19 Capacity
用于伴侣动物测试的两种 SARS-CoV-2 检测的实施和评估,以扩大 Vet-LIRN COVID-19 能力
- 批准号:
10665685 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Implementation and Evaluation of Two SARS-CoV-2 Assays for Companion Animal Testing to Expand Vet-LIRN COVID-19 Capacity
用于伴侣动物测试的两种 SARS-CoV-2 检测的实施和评估,以扩大 Vet-LIRN COVID-19 能力
- 批准号:
10609646 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Animal testing of RNA aptamers as ALS drug candidate
RNA适体作为ALS候选药物的动物试验
- 批准号:
10646463 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Data mining tool to build database to reduce animal testing in drug development.
数据挖掘工具建立数据库以减少药物开发中的动物试验。
- 批准号:
10042916 - 财政年份:2022
- 资助金额:
$ 41.75万 - 项目类别:
Grant for R&D
AgroPathogenMeter- developing a handheld platform for on-farm, rapid and, inexpensive animal testing
AgroPathogenMeter - 开发用于农场快速且廉价的动物测试的手持平台
- 批准号:
506300-2017 - 财政年份:2019
- 资助金额:
$ 41.75万 - 项目类别:
Strategic Projects - Group
Development of a novel alternative to animal testing for the evaluation of respiratory allergic sensitizing potential of chemicals
开发一种新的动物试验替代方案,用于评估化学品的呼吸道过敏致敏潜力
- 批准号:
18K11658 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the feasibility of adapting a direct PCR diagnostics approach to in-field animal testing
研究将直接 PCR 诊断方法应用于现场动物测试的可行性
- 批准号:
104623 - 财政年份:2018
- 资助金额:
$ 41.75万 - 项目类别:
Collaborative R&D