CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
基本信息
- 批准号:10018924
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBehavioralCognitiveComputer Vision SystemsCuesDataData SetDiscriminationEnvironmentExperimental DesignsFeedbackGoalsGroupingHumanImageImpairmentIndividualInfluentialsInstructionLabelMachine LearningManualsMapsMeasurementMeasuresMental disordersModelingMotorNeurodevelopmental DisorderNeuronsParticipantPerceptionProcessProtocols documentationRecurrenceSemanticsSensoryStatistical ModelsStimulusSystemTestingTextureUncertaintyVisionVisualVisual CortexVisual impairmentWorkbasebehavior influencecomputer frameworkdeep learningdetectorexpectationexperimental studyflexibilityimaging Segmentationimprovedobject recognitionpatient populationpredictive modelingsegmentation algorithmsensory inputsensory integrationsensory neurosciencesensory systemstatisticstheoriesvision sciencevisual processing
项目摘要
To understand and navigate the environment, sensory systems must solve simultaneously two competing
and challenging tasks: the segmentation of a sensory scene into individual objects and the grouping of
elementary sensory features to build these objects. Understanding perceptual grouping and segmentation
is therefore a major goal of sensory neuroscience, and it is central to advancing artificial perceptual
systems that can help restore impaired vision. To make progress in understanding image segmentation
and improving algorithms, this project combines two key components. First, a new experimental paradigm
that allows for well-controlled measurements of perceptual segmentation of natural images. This addresses
a major limitation of existing data that are either restricted to artificial stimuli, or, for natural images, rely on
manual labeling and conflate perceptual, motor, and cognitive factors. Second, this project involves
developing and testing a computational framework that accommodates bottom-up information about image
statistics and top-down information about objects and behavioral goals. This is in contrast with the
paradigmatic view of visual processing as a feedforward cascade of feature detectors, that has long
dominated computer vision algorithms and our understanding of visual processing. The proposed approach
builds instead on the influential theory that perception requires probabilistic inference to extract meaning
from ambiguous sensory inputs. Segmentation is a prime example of inference on ambiguous inputs: the
pixels of an image often cannot be labeled with certainty as grouped or segmented. This project will test the
hypothesis that human visual segmentation is a process of hierarchical probabilistic inference. Specific Aim
1 will determine whether the measured variability of human segmentations reflects the uncertainty
predicted by the model, as required for well-calibrated probabilistic inference. Specific Aim 2 addresses
how feedforward and feedback processing in human segmentation contribute to efficient integration of
visual features across different levels of complexity, from small contours to object parts. Specific Aim 3 will
determine reciprocal interactions between perceptual segmentation and top-down influences including:
semantic scene content; visual texture discrimination; and expectations reflecting environmental statistics.
The proposed approach models these influences as Bayesian priors, and thus, if supported by the
proposed experiments, will offer a unified framework to understand the integration of bottom-up and top-
down influences in human segmentation of natural inputs.
RELEVANCE (See instructions):
This project aims to provide a unified understanding of perceptual segmentation and grouping of visual
inputs encountered in the natural environment, through correct integration of the information contained in
the visual inputs with top-down information about objects and behavioral goals. This understanding is
central to advancing artificial perceptual systems that can help restore impaired vision in patient
populations.
为了理解和驾驭环境,感官系统必须同时解决两个相互竞争的问题
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben Coen-Cagli其他文献
Ruben Coen-Cagli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben Coen-Cagli', 18)}}的其他基金
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
10231148 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
CRCNS: Probabilistic models of perceptual grouping/segmentation in natural vision
CRCNS:自然视觉中感知分组/分割的概率模型
- 批准号:
9916219 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
相似海外基金
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2019
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2016
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Algorithms for Quantifying Human Behavioral Dynamics from Smartphone Sensor Data
从智能手机传感器数据量化人类行为动力学的算法
- 批准号:
RGPIN-2015-06318 - 财政年份:2015
- 资助金额:
$ 19万 - 项目类别:
Discovery Grants Program - Individual
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10058676 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10400736 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10178111 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Behavioral and neural algorithms for decision confidence
决策信心的行为和神经算法
- 批准号:
10596135 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
CAREER: Robust Behavioral Fault Simulation Algorithms for Multilevel Simulation
职业:用于多级仿真的鲁棒行为故障仿真算法
- 批准号:
9733584 - 财政年份:1998
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant