Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
基本信息
- 批准号:10471969
- 负责人:
- 金额:$ 113.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmyloid beta-ProteinArchitectureAutopsyBase SequenceBiologicalBrainCell physiologyCellsChIP-seqChromatinClinical DataCodeComputer ModelsDNADNA SequenceDataData CollectionData SetDevelopmentDiseaseFamilyFrequenciesFutureGene ExpressionGenesGeneticGenetic RiskGenomeGenomicsGenotype-Tissue Expression ProjectGoalsHealth Care CostsHistonesHuman GeneticsImmuneIndividualInvestmentsLearningLifeLinkLinkage DisequilibriumMachine LearningMapsMedicalMeta-AnalysisMethodsMicrogliaModalityModelingMolecularMultiomic DataMutagenesisNeighborhoodsNeurodegenerative DisordersNucleic Acid Regulatory SequencesPathogenesisPathway interactionsPeripheralPersonal SatisfactionPersonsPopulationPost-Transcriptional RegulationQuantitative Trait LociRNARNA ProcessingRNA SplicingRegulationResearchSignal TransductionSingle Nucleotide PolymorphismStatistical ModelsSusceptibility GeneTechniquesTestingTherapeutic StudiesTrainingUntranslated RNAVacuumVariantWorkabeta accumulationcase controlcausal variantcell typedeep learningdeep learning modeldiverse dataendophenotypeepigenomicsexome sequencingfrontal lobefunctional genomicsgene networkgene regulatory networkgenetic analysisgenetic architecturegenetic variantgenome sequencinggenome wide association studygenome-widegenomic datain silicoinsertion/deletion mutationinsightlarge scale datamRNA Expressionmachine learning algorithmmachine learning methodmolecular phenotypemonocytemulti-ethnicnew therapeutic targetnovelnovel diagnosticsnovel therapeutic interventionnovel therapeuticsprotective alleleprotein aggregationrare variantrisk variantside effectsingle-cell RNA sequencingtherapeutic developmenttherapeutic targettooltraittranscriptometranscriptome sequencingtranscriptomicswhole genome
项目摘要
With ageing populations world-wide, neurodegenerative diseases are placing an ever increasing
burden on long- term well-being, healthcare costs and family life. Despite decades of research and
enormous investment, no disease-modifying treatment is available for the most common of these
diseases: Alzheimer’s (AD). The majority of these, to-date unsuccessful, efforts have focused
on one potential cause of AD: amyloid-β aggregation. Combining population-scale data
collection, human genetics and machine learning provides a way forward to uncover and characterize
new causal cellular processes involved in AD. This would provide an array of potential therapeutic
targets, increasing the chance that one will be more easily modulated than the amyloid-β pathway.
AD-specific genomic datasets of unprecedented scale are being actively collected: whole genome
sequencing (WGS) from ~20k individuals, gene expression (RNA-seq) and epigenomics (ATAC-seq,
histone ChIP-seq) from
>1000 post-mortem AD brains, single-cell transcriptomes and similar modalities in peripheral and
brain-resident innate immune cells (which we and others have shown to be AD-relevant). Effectively
integrating these diverse data to better understand AD represents a substantial computational
challenge, both in terms of data scale and analysis complexity. This proposal leverages
state-of-the-art deep learning (DL) and machine learning (ML), combined with human genetic
analyses, to address this challenge. We will train DL models to predict epigenomic signals and
RNA splicing from genomic sequence, enabling in silico mutagenesis to estimate the
functional impact (a “delta score”) of any genetic variant. The delta scores will be used in
genetic analyses that distinguish causal associations: cellular changes that drive AD
pathogenesis rather than downstream/side effects of disease. Delta scores will aid in
associating both rare and common variants to AD. To achieve sufficient power, rare variants must be
aggregated (e.g. for a gene): delta scores will allow filtering out many likely non-functional
(particularly non-coding) variants. Most common variants from AD Genome Wide Association Studies
(GWAS) are simply correlated with the causal variant due to linkage disequilibrium (LD). Delta
scores, combined with trans-ethnic GWAS, will enable estimation of the likely causal variant(s).
These analyses will highlight variants and genes involved in AD. However, genes do not operate in a
vacuum so robust probabilistic ML will be used to learn cell-type and disease-specific gene
regulatory networks from sorted bulk and single-cell RNA-seq. The detected networks will be
integrated with our genetic findings to discover network neighborhoods/pathways especially
enriched in AD variants. Such pathways will be prime candidates for future functional and
therapeutic studies of AD.
随着世界范围内人口老龄化,神经退行性疾病正在日益增加。
长期福利、医疗费用和家庭生活的负担。尽管经过几十年的研究和
巨大的投资,没有疾病修饰治疗是最常见的这些
阿尔茨海默病(Alzheimer's,AD)迄今为止,这些努力中的大多数都没有成功,
一个可能导致AD的因素:β淀粉样蛋白聚集合并人口规模数据
收集,人类遗传学和机器学习提供了一种方法来发现和表征
参与AD的新的因果细胞过程。这将提供一系列潜在的治疗方法,
靶点,增加了比淀粉样蛋白-β途径更容易调节的机会。
正在积极收集规模空前的AD特异性基因组数据集:全基因组
来自~ 20 k个体的测序(WGS)、基因表达(RNA-seq)和表观基因组学(ATAC-seq,
组蛋白ChIP-seq),
>1000个死后AD脑,外周和外周血中的单细胞转录组和类似模式
大脑固有免疫细胞(我们和其他人已经证明与AD相关)。有效
整合这些不同的数据以更好地理解AD代表了大量的计算
在数据规模和分析复杂性方面都面临挑战。该提案利用了
最先进的深度学习(DL)和机器学习(ML),结合人类遗传
分析,以应对这一挑战。我们将训练DL模型来预测表观基因组信号,
从基因组序列中剪接RNA,使计算机诱变能够估计
任何遗传变异的功能影响(“delta评分”)。Delta评分将用于
区分因果关系的遗传分析:驱动AD的细胞变化
而不是疾病的下游/副作用。德尔塔分数将有助于
将罕见和常见变体与AD相关联。为了获得足够的功率,必须
聚合(例如,对于基因):delta评分将允许过滤掉许多可能的非功能性
(特别是非编码)变体。AD全基因组关联研究中最常见的变异
由于连锁不平衡(LD),GWAS(GWAS)与因果变异简单相关。三角洲
评分与跨种族GWAS相结合,将能够估计可能的因果变异。
这些分析将突出与AD相关的变异和基因。然而,基因并不以一种
真空,因此强大的概率ML将用于学习细胞类型和疾病特异性基因
来自分选的批量和单细胞RNA-seq的调控网络。检测到的网络将
与我们的遗传发现相结合,以发现网络邻居/路径,特别是
富含AD变体。这些途径将是未来功能性和
AD的治疗研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Arthur Knowles其他文献
David Arthur Knowles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Arthur Knowles', 18)}}的其他基金
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
- 批准号:
10674871 - 财政年份:2022
- 资助金额:
$ 113.32万 - 项目类别:
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
- 批准号:
10504516 - 财政年份:2022
- 资助金额:
$ 113.32万 - 项目类别:
A CRISPR/Cas13 approach for identifying individual transcript isoform function in cancer
用于识别癌症中个体转录亚型功能的 CRISPR/Cas13 方法
- 批准号:
10671680 - 财政年份:2022
- 资助金额:
$ 113.32万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10045386 - 财政年份:2020
- 资助金额:
$ 113.32万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10406760 - 财政年份:2020
- 资助金额:
$ 113.32万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10686319 - 财政年份:2020
- 资助金额:
$ 113.32万 - 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
- 批准号:
10247588 - 财政年份:2020
- 资助金额:
$ 113.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 113.32万 - 项目类别:
Research Grant