Learning the Regulatory Code of Alzheimer's Disease Genomes

学习阿尔茨海默病基因组的调控密码

基本信息

项目摘要

With ageing populations world-wide, neurodegenerative diseases are placing an ever increasing burden on long- term well-being, healthcare costs and family life. Despite decades of research and enormous investment, no disease-modifying treatment is available for the most common of these diseases: Alzheimer’s (AD). The majority of these, to-date unsuccessful, efforts have focused on one potential cause of AD: amyloid-β aggregation. Combining population-scale data collection, human genetics and machine learning provides a way forward to uncover and characterize new causal cellular processes involved in AD. This would provide an array of potential therapeutic targets, increasing the chance that one will be more easily modulated than the amyloid-β pathway. AD-specific genomic datasets of unprecedented scale are being actively collected: whole genome sequencing (WGS) from ~20k individuals, gene expression (RNA-seq) and epigenomics (ATAC-seq, histone ChIP-seq) from >1000 post-mortem AD brains, single-cell transcriptomes and similar modalities in peripheral and brain-resident innate immune cells (which we and others have shown to be AD-relevant). Effectively integrating these diverse data to better understand AD represents a substantial computational challenge, both in terms of data scale and analysis complexity. This proposal leverages state-of-the-art deep learning (DL) and machine learning (ML), combined with human genetic analyses, to address this challenge. We will train DL models to predict epigenomic signals and RNA splicing from genomic sequence, enabling in silico mutagenesis to estimate the functional impact (a “delta score”) of any genetic variant. The delta scores will be used in genetic analyses that distinguish causal associations: cellular changes that drive AD pathogenesis rather than downstream/side effects of disease. Delta scores will aid in associating both rare and common variants to AD. To achieve sufficient power, rare variants must be aggregated (e.g. for a gene): delta scores will allow filtering out many likely non-functional (particularly non-coding) variants. Most common variants from AD Genome Wide Association Studies (GWAS) are simply correlated with the causal variant due to linkage disequilibrium (LD). Delta scores, combined with trans-ethnic GWAS, will enable estimation of the likely causal variant(s). These analyses will highlight variants and genes involved in AD. However, genes do not operate in a vacuum so robust probabilistic ML will be used to learn cell-type and disease-specific gene regulatory networks from sorted bulk and single-cell RNA-seq. The detected networks will be integrated with our genetic findings to discover network neighborhoods/pathways especially enriched in AD variants. Such pathways will be prime candidates for future functional and therapeutic studies of AD.
随着世界范围内人口的老龄化,神经退行性疾病正在引起越来越多的关注

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Arthur Knowles其他文献

David Arthur Knowles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Arthur Knowles', 18)}}的其他基金

Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10674871
  • 财政年份:
    2022
  • 资助金额:
    $ 109.47万
  • 项目类别:
Delineating the network effects of mental disorder-associated variants using convex optimization methods
使用凸优化方法描述精神障碍相关变异的网络效应
  • 批准号:
    10504516
  • 财政年份:
    2022
  • 资助金额:
    $ 109.47万
  • 项目类别:
A CRISPR/Cas13 approach for identifying individual transcript isoform function in cancer
用于识别癌症中个体转录亚型功能的 CRISPR/Cas13 方法
  • 批准号:
    10671680
  • 财政年份:
    2022
  • 资助金额:
    $ 109.47万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10471969
  • 财政年份:
    2020
  • 资助金额:
    $ 109.47万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10045386
  • 财政年份:
    2020
  • 资助金额:
    $ 109.47万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10406760
  • 财政年份:
    2020
  • 资助金额:
    $ 109.47万
  • 项目类别:
Learning the Regulatory Code of Alzheimer's Disease Genomes
学习阿尔茨海默病基因组的调控密码
  • 批准号:
    10686319
  • 财政年份:
    2020
  • 资助金额:
    $ 109.47万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.47万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了