Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
基本信息
- 批准号:10674037
- 负责人:
- 金额:$ 78.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiological ModelsBrainCRISPR/Cas technologyCX3CL1 geneCellsCerebrumCoculture TechniquesCollaborationsCommunicationDefectDevelopmentDrug abuseDrug usageEffector CellFractalkineGABA ReceptorGeneticGenetic TranscriptionGlutamate ReceptorHIVHIV InfectionsHIV SeropositivityHandHumanImaging technologyIndividualInfectionInflammationInflammation MediatorsInflammatoryInflammatory ResponseInjuryInvestigationLaboratoriesLeadLibrariesMediatingMemoryMethamphetamineMicrogliaModelingMolecular BiologyMorbidity - disease rateMutationNatural ProductsNerve DegenerationNeurobiologyNeurocognitiveNeurogliaNeuronsOrganoidsPathway interactionsPatientsPattern recognition receptorPharmaceutical PreparationsProductionProductivityPurinoceptorRattusReceptor GeneReceptor SignalingRecoveryRegulationRestRiskRoleSignal PathwaySignal TransductionStressSymptomsSystemT-LymphocyteTestingTherapeuticUnited StatesViralViral ProteinsVirusantiretroviral therapycell transformationdesigndopaminergic neurondrug of abuseexperimental studygamma-Aminobutyric Acidgenome editingglial activationinduced pluripotent stem cellinhibitorknock-downmethamphetamine effectmethamphetamine exposuremigrationmortalitymultidisciplinaryneurocognitive disorderneurotoxicneurotransmissionnovelpharmacologicprotective effectreceptorreconstitutionresponsesmall hairpin RNAsubstance usetranscriptome sequencing
项目摘要
Summary
Over 40% of HIV-positive individuals in the United States engage in substance use. This
not only represents a major cause of enhanced morbidity and mortality, but also is associated
with increased risks of neurocognitive disorders, such as HAND. Neurons possess refined
systems for maintaining constant communication with glia through propagation of “Off” and “On”
signals controlling microglial activation states. Using HIV latency models in immortalized human
microglial cells (hµglia/HIV), we have shown previously that cellular activation and inflammatory
responses induce HIV production. Remarkably, co-culture of productively infected microglia with
an excess of healthy neurons leads to viral silencing. We have also shown that hµglia/HIV cells
can migrate into brain organoids where they become silenced. However, damaging neurons with
a variety of agents, including methamphetamine (METH), a frequently-used abuse substance
among HIV-infected individuals, produce reactivation signals for HIV, and this initiates a cycle of
microglial activation and further neuronal damage. This cycle of shutdown and reactivation seems
to parallel the M1 to M2 transition model of microglial cells, much as HIV latency in T cells is a
product of the natural transition of effector cells to resting memory cells. In this proposal, we seek
to define the key signals mediating the cycle of viral silencing and reactivation in microglial cells
by neurons in the context of iPSC-derived cerebral organoids. This multidisciplinary investigation
is designed as a close collaboration between the laboratories of Dr. Jonathan Karn (CWRU, HIV
molecular biology), Dr. Anthony Wynshaw-Boris (CWRU, iPSC cells, brain organoids), Dr. Kurt
Hauser (VCU, neurobiology and drug abuse), and Dr. Pamela Knapp (VCU, brain organoids). To
avoid the limitations of working with transformed cells, we have recently initiated experiments
using co-cultures between iPSC-derived cerebral organoids and microglia. Using co-cultures
between iPSC-derived cerebral organoids and microglia, we will thoroughly test the hypothesis
that the exaggerated responses of HIV-infected microglia to neuronal damage leads to enhanced
neurodegeneration. We will also test the hypothesis that exposure to METH, given this
background of faulty microglia-neuron crosstalk, enhances HIV replication. Using genome editing
approaches, we will identify the specific contribution of “On” and “Off” receptor systems in
controlling HIV latency in microglia, and study how METH impacts neuronal-microglial signaling
to augment HIV production. In parallel with our genetic investigations, we will also evaluate a
number of pharmacological agents against microglial receptors, HIV transcription inhibitors, and
mediators of inflammation in order to define therapeutic approaches that might be expected to
slow the development of HAND, especially in patients who abuse drugs.
摘要
在美国,超过40%的艾滋病毒阳性个人使用药物。这
不仅是发病率和死亡率上升的主要原因,而且与
增加患神经认知障碍的风险,如手。神经元拥有精致的
通过传播“OFF”和“ON”来保持与神经胶质细胞的持续通信的系统
控制小胶质细胞激活状态的信号。在永生化人类中使用HIV潜伏期模型
小胶质细胞(hµglia/HIV),我们以前已经证明细胞活化和炎症
反应会导致艾滋病毒的产生。值得注意的是,与生产性感染的小胶质细胞共培养
过多的健康神经元会导致病毒沉默。我们还证明了H-胶质细胞/HIV细胞
可以迁移到大脑器官中,在那里它们变得沉默。然而,用
各种制剂,包括甲基苯丙胺(冰毒),一种常用的滥用物质
在艾滋病毒感染者中,产生艾滋病毒的重新激活信号,这启动了一个循环
小胶质细胞的激活和进一步的神经元损伤。这种关机和重新激活的循环似乎
为了平行于小胶质细胞M1到M2的转变模型,就像T细胞中的HIV潜伏期是
效应细胞向静息记忆细胞自然转变的产物。在这项提案中,我们寻求
确定介导小胶质细胞病毒沉默和再激活周期的关键信号
在IPSC衍生的脑器官的背景下的神经元。这项多学科的调查
旨在与乔纳森·卡恩博士(CWRU,HIV)的实验室密切合作
分子生物学),Anthony Wynshaw-Boris博士(CWRU,IPSC细胞,脑器官),Kurt博士
Hauser(VCU,神经生物学和药物滥用)和Pamela Knapp博士(VCU,脑器官)。至
避免了使用转化细胞的限制,我们最近开始了实验
使用IPSC来源的脑器官和小胶质细胞之间的共培养。使用共同文化
在IPSC衍生的脑器官和小胶质细胞之间,我们将彻底检验这一假说
HIV感染的小胶质细胞对神经元损伤的夸大反应导致增强
神经退行性变。我们还将测试假设,鉴于这一点,接触冰毒
背景有缺陷的小胶质细胞-神经元串扰,增强艾滋病毒复制。使用基因组编辑
方法,我们将确定“开”和“关”受体系统在
控制小胶质细胞中的HIV潜伏期,并研究冰毒如何影响神经元-小胶质细胞信号转导
以增加艾滋病毒的产量。在我们进行基因研究的同时,我们还将评估一项
抗小胶质细胞受体、HIV转录抑制剂和
炎症介质,以确定可能预期的治疗方法
延缓手部发育,尤其是滥用药物的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN KARN其他文献
JONATHAN KARN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN KARN', 18)}}的其他基金
The role of RNA m6A modification in the regulation of HIV latency and reactivation
RNA m6A 修饰在调节 HIV 潜伏和再激活中的作用
- 批准号:
10600078 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
The role of RNA m6A modification in the regulation of HIV latency and reactivation
RNA m6A 修饰在调节 HIV 潜伏和再激活中的作用
- 批准号:
10461499 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
Research Support Core B: Primary Cell, Biomimetic, and iPSC-derived Cell Models
研究支持核心 B:原代细胞、仿生和 iPSC 衍生细胞模型
- 批准号:
10304584 - 财政年份:2021
- 资助金额:
$ 78.49万 - 项目类别:
Research Support Core B: Primary Cell, Biomimetic, and iPSC-derived Cell Models
研究支持核心 B:原代细胞、仿生和 iPSC 衍生细胞模型
- 批准号:
10632094 - 财政年份:2021
- 资助金额:
$ 78.49万 - 项目类别:
Control of P-TEFb biogenesis and HIV transcription in primary T-cells
原代 T 细胞中 P-TEFb 生物发生和 HIV 转录的控制
- 批准号:
10158438 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
- 批准号:
10220927 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Control of P-TEFb biogenesis and HIV transcription in primary T-cells
原代 T 细胞中 P-TEFb 生物发生和 HIV 转录的控制
- 批准号:
10403547 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Regulation of HIV latency by microglial-neuronal interactions
小胶质细胞-神经元相互作用对 HIV 潜伏期的调节
- 批准号:
10450662 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 78.49万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 78.49万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 78.49万 - 项目类别: