Multi-regional neural circuit dynamics underlying short-term memory

短期记忆的多区域神经回路动力学

基本信息

  • 批准号:
    10677029
  • 负责人:
  • 金额:
    $ 61.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Abstract The focus of this BRAIN Initiative funding opportunity is to use “innovative approaches to understand how circuit activity gives rise to a specific behavior”. Cognitive behaviors arise from collective interactions of multiple brain systems. Yet, for most cognitive processes, we do not yet know which brain areas are involved and how multi-regional interactions mediate specific cognitive processes. This gap in knowledge arises because separate parts of the brain are studied individually, yet, the brain circuits driving behavior vary from one behavior to another. The goal of this proposal is to establish a working example of how brain-wide activity dynamics collectively generate one cognitive behavior. We address this question by studying how a mouse flexibly generate a volitional movement based on short-term memory. Neurons in multiple parts of the brain, including the frontal cortex, thalamus, midbrain, and cerebellum respond robustly during this short-term memory and causally contribute to the behavior. Taking advantage of this opportunity to establish how activity distributed across multiple brain systems orchestrates one coherent behavior, in this proposal, we will use newly developed experimental frameworks to analyze the underlying neural circuitry at brain-wide scale and establish causal relationships between specific activity patterns and behavior. First, we will use brain-wide loss-of-function screen, high-density silicon probe recording, and anatomical techniques to produce multi- modal maps of core neural substrates of the short-term memory. The outcome datasets will be put into standardized brain coordinates, making it possible to link the functional data to existing connectional and gene expression atlases. Next, we will use simultaneous recordings and spatiotemporally-precise perturbations to probe multi-regional interactions underlying the observed activity patterns and relationships to behavior. Finally, we will build multi-regional models that offer interpretable description of the behaviorally-relevant dynamics and relate them to underlying circuit connectivity. The outcome will disambiguate competing models of how information distributed over multiple brain regions is coordinated during cognitive processes, how information is dynamically routed and gated. The experimental, analysis, and modeling approaches will be broadly useful for analyzing distributed circuits driving behavior, as is the focus of multiple collaborative U19 grants. All the data and code will be published in the well document Neurodata Without Border (NWB) format.
摘要

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Not everything, not everywhere, not all at once: a study of brain-wide encoding of movement.
不是一切,不是到处,也不是同时:对全脑运动编码的研究。
  • DOI:
    10.1101/2023.06.08.544257
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang,ZiyueAiden;Chen,Susu;Liu,Yi;Liu,Dave;Svoboda,Karel;Li,Nuo;Druckmann,Shaul
  • 通讯作者:
    Druckmann,Shaul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaul Druckmann其他文献

Shaul Druckmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaul Druckmann', 18)}}的其他基金

Dissecting modular and redundant organization of cortical circuits
剖析皮质电路的模块化和冗余组织
  • 批准号:
    10657919
  • 财政年份:
    2023
  • 资助金额:
    $ 61.69万
  • 项目类别:
CRCNS: US-Israeli Research Proposal: Deciphering reorganization of multi-regional activity following category learning
CRCNS:美国-以色列研究提案:解读类别学习后多区域活动的重组
  • 批准号:
    10646434
  • 财政年份:
    2022
  • 资助金额:
    $ 61.69万
  • 项目类别:
CRCNS: US-Israeli Research Proposal: Deciphering reorganization of multi-regional activity following category learning
CRCNS:美国-以色列研究提案:解读类别学习后多区域活动的重组
  • 批准号:
    10610501
  • 财政年份:
    2022
  • 资助金额:
    $ 61.69万
  • 项目类别:
Single-neuron population dynamics in human speech motor cortex for a speech prosthesis
用于言语假体的人类言语运动皮层的单神经元群体动态
  • 批准号:
    10686001
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Single-neuron population dynamics in human speech motor cortex for a speech prosthesis
用于言语假体的人类言语运动皮层的单神经元群体动态
  • 批准号:
    10460425
  • 财政年份:
    2021
  • 资助金额:
    $ 61.69万
  • 项目类别:
Multi-regional neural circuit dynamics underlying short-term memory
短期记忆的多区域神经回路动力学
  • 批准号:
    10241924
  • 财政年份:
    2019
  • 资助金额:
    $ 61.69万
  • 项目类别:
Multi-regional neural circuit dynamics underlying short-term memory
短期记忆的多区域神经回路动力学
  • 批准号:
    9449037
  • 财政年份:
    2017
  • 资助金额:
    $ 61.69万
  • 项目类别:
Engaging new cognitive and motor signals to improve communication prostheses
利用新的认知和运动信号来改善沟通假体
  • 批准号:
    10466857
  • 财政年份:
    2015
  • 资助金额:
    $ 61.69万
  • 项目类别:
Engaging new cognitive and motor signals to improve communication prostheses
利用新的认知和运动信号来改善沟通假体
  • 批准号:
    10675705
  • 财政年份:
    2015
  • 资助金额:
    $ 61.69万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 61.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了