Multi-regional neural circuit dynamics underlying short-term memory
短期记忆的多区域神经回路动力学
基本信息
- 批准号:10241924
- 负责人:
- 金额:$ 61.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAlzheimer&aposs DiseaseAnatomyAnimalsAnteriorAreaAtlasesBRAIN initiativeBehaviorBehavior monitoringBehavioralBehavioral ParadigmBiophysical ProcessBrainBrain regionCerebellumCodeCognitiveDataData SetDecision MakingDiseaseEtiologyEventFunctional disorderFunding OpportunitiesFutureGene ExpressionGoalsGrantIndividualKnowledgeLinkMapsMediatingMemoryMethodsMidbrain structureModelingMovementMultiregional AnalysesMusNatureNeuronsOutcomePathway AnalysisPatternPopulation DynamicsPsyche structurePublishingReadingRecoveryRestRouteSensoryShort-Term MemorySignal TransductionSiliconSiteStandardizationStructureSystemTechniquesTechnologyThalamic structureVolitionWorkbasebrain sizecognitive functioncognitive processcontrol trialdensitydriving behaviorexperienceexperimental analysisexperimental studyflexibilityfrontal lobeinformation modelinnovationloss of functionmultimodalityneural circuitpredicting responserelating to nervous systemresponsesensory discriminationspatiotemporaltheories
项目摘要
Abstract
The focus of this BRAIN Initiative funding opportunity is to use “innovative approaches to understand how
circuit activity gives rise to a specific behavior”. Cognitive behaviors arise from collective interactions of
multiple brain systems. Yet, for most cognitive processes, we do not yet know which brain areas are involved
and how multi-regional interactions mediate specific cognitive processes. This gap in knowledge arises
because separate parts of the brain are studied individually, yet, the brain circuits driving behavior vary from
one behavior to another. The goal of this proposal is to establish a working example of how brain-wide activity
dynamics collectively generate one cognitive behavior. We address this question by studying how a mouse
flexibly generate a volitional movement based on short-term memory. Neurons in multiple parts of the brain,
including the frontal cortex, thalamus, midbrain, and cerebellum respond robustly during this short-term
memory and causally contribute to the behavior. Taking advantage of this opportunity to establish how activity
distributed across multiple brain systems orchestrates one coherent behavior, in this proposal, we will use
newly developed experimental frameworks to analyze the underlying neural circuitry at brain-wide scale and
establish causal relationships between specific activity patterns and behavior. First, we will use brain-wide
loss-of-function screen, high-density silicon probe recording, and anatomical techniques to produce multi-
modal maps of core neural substrates of the short-term memory. The outcome datasets will be put into
standardized brain coordinates, making it possible to link the functional data to existing connectional and gene
expression atlases. Next, we will use simultaneous recordings and spatiotemporally-precise perturbations to
probe multi-regional interactions underlying the observed activity patterns and relationships to behavior.
Finally, we will build multi-regional models that offer interpretable description of the behaviorally-relevant
dynamics and relate them to underlying circuit connectivity. The outcome will disambiguate competing models
of how information distributed over multiple brain regions is coordinated during cognitive processes, how
information is dynamically routed and gated. The experimental, analysis, and modeling approaches will be
broadly useful for analyzing distributed circuits driving behavior, as is the focus of multiple collaborative U19
grants. All the data and code will be published in the well document Neurodata Without Border (NWB) format.
摘要
这个BRAIN计划资助机会的重点是使用"创新方法来了解如何
电路活动引起特定行为"。认知行为产生于
多重大脑系统然而,对于大多数认知过程,我们还不知道哪些大脑区域参与其中
以及多区域互动如何调节特定的认知过程。这种知识上的差距
因为大脑的不同部分是单独研究的,然而,驱动行为的大脑回路不同,
一种行为对另一种行为的影响。这项提案的目的是建立一个工作的例子,说明大脑活动是如何
动力学共同产生一种认知行为。我们通过研究一只老鼠
灵活地产生基于短期记忆的意志运动。大脑多个部位的神经元,
包括额叶皮层、丘脑、中脑和小脑在这一短期内都有强烈的反应。
记忆和因果关系有助于行为。利用这个机会来确定活动如何
分布在多个大脑系统协调一个连贯的行为,在这个建议中,我们将使用
新开发的实验框架,以分析潜在的神经回路在全脑范围内,
建立特定活动模式和行为之间的因果关系。首先,我们将使用全脑
功能丧失屏幕,高密度硅探头记录,和解剖技术,以产生多个,
短期记忆的核心神经基质的模态图。结果数据集将被放入
标准化的大脑坐标,使得将功能数据与现有的连接和基因联系起来成为可能。
表情图谱接下来,我们将使用同步记录和时空精确扰动,
探索所观察到的活动模式和行为关系的多区域相互作用。
最后,我们将建立多区域模型,为行为相关性提供可解释的描述
动力学,并将它们与底层电路连接性联系起来。其结果将消除竞争模式的歧义
在认知过程中,分布在多个大脑区域的信息是如何协调的,
信息被动态地路由和选通。实验,分析和建模方法将是
广泛用于分析分布式电路驱动行为,这是多个协作U19的重点
补助金。所有数据和代码将以无边界神经数据(NWB)格式发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaul Druckmann其他文献
Shaul Druckmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaul Druckmann', 18)}}的其他基金
Dissecting modular and redundant organization of cortical circuits
剖析皮质电路的模块化和冗余组织
- 批准号:
10657919 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
CRCNS: US-Israeli Research Proposal: Deciphering reorganization of multi-regional activity following category learning
CRCNS:美国-以色列研究提案:解读类别学习后多区域活动的重组
- 批准号:
10646434 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:
CRCNS: US-Israeli Research Proposal: Deciphering reorganization of multi-regional activity following category learning
CRCNS:美国-以色列研究提案:解读类别学习后多区域活动的重组
- 批准号:
10610501 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:
Single-neuron population dynamics in human speech motor cortex for a speech prosthesis
用于言语假体的人类言语运动皮层的单神经元群体动态
- 批准号:
10686001 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Single-neuron population dynamics in human speech motor cortex for a speech prosthesis
用于言语假体的人类言语运动皮层的单神经元群体动态
- 批准号:
10460425 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Multi-regional neural circuit dynamics underlying short-term memory
短期记忆的多区域神经回路动力学
- 批准号:
10677029 - 财政年份:2019
- 资助金额:
$ 61.69万 - 项目类别:
Multi-regional neural circuit dynamics underlying short-term memory
短期记忆的多区域神经回路动力学
- 批准号:
9449037 - 财政年份:2017
- 资助金额:
$ 61.69万 - 项目类别:
Engaging new cognitive and motor signals to improve communication prostheses
利用新的认知和运动信号来改善沟通假体
- 批准号:
10466857 - 财政年份:2015
- 资助金额:
$ 61.69万 - 项目类别:
Engaging new cognitive and motor signals to improve communication prostheses
利用新的认知和运动信号来改善沟通假体
- 批准号:
10675705 - 财政年份:2015
- 资助金额:
$ 61.69万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Research Grant