Data-Driven Discovery of Heterogeneous Treatment Effects of Statin Use on Dementia Risk

他汀类药物使用对痴呆风险的异质治疗效果的数据驱动发现

基本信息

  • 批准号:
    10678219
  • 负责人:
  • 金额:
    $ 4.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY (ABSTRACT) Alzheimer’s Disease and Related Dementias (ADRD) currently affects more than 4 million Americans and over 50 million individuals worldwide. The identification of prevention strategies for dementia is critical, particularly due to the lack of effective treatments. In parallel, there is growing consensus that lipid metabolism is a major contributor to ADRD and may be an important strategy for risk reduction and prevention. Antihyperlipidemic agents (i.e., statins) are widely used, yet evidence on the relationship between antihyperlipidemic agents (i.e., statins) and ADRD has been largely inconclusive. One possible explanation for the mixed findings is heterogeneity in study populations and their characteristics. For example, the effectiveness of statins is evidenced to vary by age, ApoE4 status, and pre-existing disease status.34-36 Accordingly, there is a growing need to identify the factors (i.e., effect modifiers) which influence heterogeneities in the effect of statins on dementia. The objective of this study is to triangulate evidence on the identification and estimation of heterogeneous treatment effects by using three causal machine learning methods, specifically the honest causal forest/policy tree, doubly robust adaptive LASSO, and Bayesian Adaptive Regression Trees (BART), to identify novel effect modifiers and optimal subgroups for the effect of statins on dementia. While traditional parametric regression approaches are designed to test a priori hypotheses regarding effect modification, such approaches are not suitable for yielding novel hypotheses. The causal machine learning methods described in this proposal fill this gap; not only do such approaches help identify novel effect modifiers, but they can also facilitate the subsequent identification of optimal treatment rules across those modifiers. In this study, I propose to use a cohort of 307,719 individuals from the UK Biobank data who were at least 55 when they were initially recruited from 2006 to 2010. The analytical sample will be large, allowing me to rigorously investigate heterogeneous treatment effects across different subgroups. Specifically, in Aim 1, I propose to estimate the real-world average treatment effect (ATE) of statins on ADRD across the entire sample. I will then, in Aim 2, apply three causal machine learning algorithms to identify novel effect modifiers and corresponding optimal subgroups for the effect of statin use on ADRD risk. Finally, in Aim 3, I will quantify the reduction in ADRD cases that would result from implementing each of the optimal treatment rules generated under Aim 2 and compare them to the reduction in ADRD cases observed under Aim 1. This F31 proposal application will support my dissertation research, as well as my interest in gaining training in causal machine learning, as well as substantive training in dementia, cognitive aging, and its psychometric methods. Under the guidance of my mentorship team, I look forward to advancing dementia prevention research while also pursuing my goal of becoming an independent investigator in research methods on cognitive aging.
项目概要(摘要) 阿尔茨海默病和相关痴呆症(ADRD)目前影响着400多万美国人, 全球5000万人。确定痴呆症的预防策略至关重要, 由于缺乏有效的治疗。与此同时,越来越多的人认为脂质代谢是一个主要的 导致ADRD,可能是降低和预防风险的重要策略。降血脂 代理(即,他汀类药物)被广泛使用,但是关于抗高血压药物(即, 他汀类药物)和ADRD在很大程度上没有定论。对这种混合结果的一种可能解释是 研究人群的异质性及其特征。例如,他汀类药物的有效性是 证明其随年龄、ApoE 4状态和预先存在的疾病状态而变化。34 -36因此, 需要识别因素(即,影响他汀类药物作用异质性的效应调节剂), 痴呆本研究的目的是三角证据的识别和估计 通过使用三种因果机器学习方法,特别是诚实的 因果森林/策略树、双重鲁棒自适应LASSO和贝叶斯自适应回归树(BART), 确定新的效果调节剂和最佳亚组的他汀类药物对痴呆症的影响。而传统 参数回归方法被设计用于测试关于效应修正的先验假设,例如 这些方法不适合于产生新的假设。中描述的因果机器学习方法 这个提议填补了这一空白;这样的方法不仅有助于识别新的效果调节剂,而且它们还可以 便于随后识别这些修改器之间的最佳处理规则。在这项研究中,我建议 使用来自英国生物银行数据的307,719人的队列,他们最初至少55岁, 从2006年到2010年。分析样本会很大,让我可以严格调查 不同亚组的治疗效果不一致。具体而言,在目标1中,我建议估计 整个样本中他汀类药物对ADRD的真实世界平均治疗效应(ATE)。然后,在目标2中, 应用三种因果机器学习算法来识别新的效果修饰符和相应的最佳效果修饰符。 使用他汀类药物对ADRD风险影响的亚组。最后,在目标3中,我将量化ADRD的减少 实施目标2下产生的每一个最佳治疗规则所产生的病例, 将其与目标1下观察到的ADRD病例减少进行比较。本F31提案申请将 支持我的论文研究,以及我对获得因果机器学习培训的兴趣,以及 作为痴呆症、认知老化及其心理测量方法的实质性培训。在我的指导下, 导师团队,我期待着推进痴呆症预防研究,同时也追求我的目标, 成为认知老化研究方法的独立研究者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neal Jawadekar其他文献

Neal Jawadekar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
  • 批准号:
    JCZRQN202500010
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
  • 批准号:
    2025JJ70209
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
  • 批准号:
    2023JJ50274
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
  • 批准号:
    81973577
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
  • 批准号:
    81602908
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
  • 批准号:
    81501928
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
  • 批准号:
    23K07844
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
  • 批准号:
    22KJ2960
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
  • 批准号:
    23KK0156
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
  • 批准号:
    10677409
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
  • 批准号:
    497927
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
  • 批准号:
    10836835
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
  • 批准号:
    10679287
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
  • 批准号:
    478877
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Operating Grants
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
  • 批准号:
    23K06378
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
  • 批准号:
    23K10845
  • 财政年份:
    2023
  • 资助金额:
    $ 4.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了