The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
基本信息
- 批准号:10678248
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlpha CellAmino Acid TransporterAmino AcidsArginineBasic Amino Acid Transport SystemsBloodCRISPR/Cas technologyCalciumCationsCause of DeathCell ProliferationCell physiologyCell secretionCellsChemicalsClinical TrialsCo-ImmunoprecipitationsDataDevelopmentDiabetes MellitusDisease ProgressionEndocrineEnvironmentEnzyme InhibitionFRAP1 geneFailureFeedbackFellowshipFunctional disorderFutureGlucagonGluconeogenesisGlucoseGlutamineHormone secretionHumanHyperglycemiaHyperplasiaImageImmunohistochemistryImpairmentIncubatedIndividualInsulinInsulin-Dependent Diabetes MellitusInterruptionIslets of LangerhansKnock-outKnockout MiceLiverMeasuresMembraneMentorsMentorshipMetabolismModelingModificationMolecularMonitorMusNitric OxideNitric Oxide PathwayNon-Insulin-Dependent Diabetes MellitusNutrientPathway interactionsPhysiologicalProductionProliferatingPropertyProteinsQualifyingRegulationResearchResourcesRodent ModelRoleScientistSignal TransductionStructure of alpha Cell of isletStructure of beta Cell of isletSystemTestingTherapeuticTissuesTrainingTransgenic MiceWestern BlottingWorkarginaseblood glucose regulationcalcium indicatorcareercombatexperimental studyhyperglucagonemiain vivo Modelinsulin secretionisletmouse modelnew therapeutic targetprotein protein interactionsensorsmall moleculetool
项目摘要
Project Summary
The training strategy demonstrated in this document will help me advance my career to be an
independent research scientist in the field of diabetes. I propose to assess the role of arginine transport in the
regulation of pancreatic islet cell proliferation and hormone secretion. Disease progression of diabetes is
attributed to the inability of pancreatic β-cells to sufficiently secrete insulin and the combined failure to suppress
pancreatic α-cell secretion of glucagon. Inhibition of glucagon signaling reduces hyperglycemia for individuals
with diabetes.3 However, impairment of glucagon signaling leads to hyperglucagonemia, hyperaminoacidemia,
and α-cell proliferation.4,5 Our lab has identified a liver-α-cell axis that contributes to α-cell proliferation through
the accumulation of amino acids in the blood.4 We have identified two major amino acids that contribute to α-cell
proliferation, glutamine4 and arginine (unpublished data). However, the mechanisms underlying arginine
transport in the α-cell specifically and its contribution to α-cell proliferation and secretion are not well defined.
The cationic amino acid transporter SLC7A2 is highly expressed in mouse and human pancreatic α-cells.
Therefore, we hypothesize that hyperaminoacidemia that results from interrupted glucagon signaling
contributes to increased arginine transport promoting α-cell proliferation and dysfunction. Our
preliminary studies show that SLC7A2 is required for α-cell proliferation and glucagon secretion even when
challenged with strong membrane depolarizing agents challenging current cation-centric models of arginine
stimulated secretion (Figure 2 and 4). Using a new α-cell specific Slc7a2 knockout mouse model, we will unravel
the molecular mechanisms that lead to arginine-stimulated α-cell proliferation and glucagon secretion. To assess
whether SLC7A2 in α-cells is necessary for amino acid-dependent α-cell proliferation, Slc7a2 knockout in
immortalized mouse αTC1-6 cells and an inducible α-cell specific Slc7a2 knockout mouse model will be used to
assess changes in α-cell proliferation and mass. Additionally, the mechanism of arginine-induced mTORC1
activation will be targeted to determine if arginine activates mTORC1 through the inactivation of the CASTOR1-
GATOR2 pathway (Aim 1). Furthermore, to test the ability for arginine transport via SLC7A2 to modulate
glucagon secretion we will combine tools used in Aim 1 with chemical and genetically encoded Ca2+ sensors to
observe changes in α-cell glucagon secretion. We will also measure nitric oxide levels, and test the affect of
nitric oxide on glucagon secretion to understand the mechanism behind arginine-induced glucagon secretion
(Aim 2). Successfully accomplishing this study will enhance our current understanding of amino acid-induced α-
cell proliferation and function, as well as broaden the possibilities of therapeutic treatments for diabetes. My
training will be achieved through the execution of this study utilizing the fantastic resources and facilities provided
by Vanderbilt and thorough mentorship from my highly qualified mentors, Drs. Danielle Dean and David
Jacobsen.
项目摘要
本文档中展示的培训策略将帮助我推进职业生涯,
糖尿病领域的独立研究科学家。我建议评估精氨酸转运在
调节胰岛细胞增殖和激素分泌。糖尿病的疾病进展是
这归因于胰腺β细胞不能充分分泌胰岛素以及抑制胰岛素分泌的组合失败。
胰腺α细胞分泌胰高血糖素。抑制胰高血糖素信号传导可降低个体的高血糖症
然而,胰高血糖素信号传导的损伤导致高胰高血糖素血症,高氨基酸血症,
和α-细胞增殖。4,5我们的实验室已经确定了一个肝脏-α-细胞轴,它通过以下途径促进α-细胞增殖:
氨基酸在血液中的积累。4我们已经确定了两种主要的氨基酸,有助于α-细胞
增殖、谷氨酰胺4和精氨酸(未发表的数据)。然而,精氨酸的潜在机制
α-细胞中的特异性转运及其对α-细胞增殖和分泌的贡献尚未明确。
阳离子氨基酸转运蛋白SLC 7A 2在小鼠和人胰腺α细胞中高度表达。
因此,我们假设胰高血糖素信号传导中断导致的高氨基酸血症
有助于增加精氨酸转运,促进α细胞增殖和功能障碍。我们
初步研究表明,即使当α-细胞增殖和胰高血糖素分泌时,
用强膜去极化剂挑战当前精氨酸的阳离子中心模型
刺激分泌(图2和4)。使用新的α细胞特异性Slc 7a 2敲除小鼠模型,我们将解开
导致精氨酸刺激α细胞增殖和胰高血糖素分泌的分子机制。评估
α细胞中的SLC 7A 2是否是氨基酸依赖性α细胞增殖所必需的,
永生化小鼠α TC 1 -6细胞和诱导型α细胞特异性Slc 7a 2敲除小鼠模型将用于
评估α细胞增殖和质量的变化。此外,马槟榔诱导mTORC 1的机制
激活将被靶向以确定精氨酸是否通过CASTOR 1的失活激活mTORC 1。
GATOR 2通路(Aim 1)。此外,为了测试精氨酸通过SLC 7A 2转运以调节细胞凋亡的能力,
胰高血糖素的分泌,我们将联合收割机的工具,用于目标1与化学和遗传编码的Ca 2+传感器,
观察α细胞胰高血糖素分泌的变化。我们还将测量一氧化氮水平,并测试
一氧化氮对胰高血糖素分泌的影响,以了解精氨酸诱导胰高血糖素分泌的机制
(Aim 2)。成功完成这项研究将提高我们目前对氨基酸诱导的α-
细胞增殖和功能,以及扩大糖尿病治疗的可能性。我
培训将通过利用所提供的出色资源和设施执行本研究来实现
范德比尔特和我的高素质的导师,博士Danielle院长和大卫彻底的指导
雅各布森
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jade Elise Stanley其他文献
Jade Elise Stanley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Alpha cell-derived Extracellular Vesicles and Maternal Insulin Production
α细胞来源的细胞外囊泡和母体胰岛素的产生
- 批准号:
10681939 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10427574 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Regulation of alpha-cell glucagon secretion by mitochondrial anaplerosis-cataplerosis
线粒体回补-回补对α细胞胰高血糖素分泌的调节
- 批准号:
10607392 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Targeting alpha-cell GPCRs to stimulate glucagon and counter hypoglycemia
靶向 α 细胞 GPCR 刺激胰高血糖素并对抗低血糖
- 批准号:
10675646 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Elucidating alpha cell defects in human type 1 diabetes using precision cut pancreas slice-on-a-chip coupled with high spatio-temporal microscopy
使用精密切割的胰腺切片结合高时空显微镜阐明人类 1 型糖尿病的 α 细胞缺陷
- 批准号:
457552 - 财政年份:2021
- 资助金额:
$ 3.3万 - 项目类别:
Studentship Programs
Defining alpha-cell proglucagon processing for type 2 diabetes treatment
定义 2 型糖尿病治疗的 α 细胞胰高血糖素原加工过程
- 批准号:
10331361 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
In vivo systems to discover mechanisms regulating human islet alpha cell function
体内系统发现调节人类胰岛α细胞功能的机制
- 批准号:
10623306 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
Defining alpha-cell PC1/3 expression regulation for type 2 diabetes
定义 2 型糖尿病的 α 细胞 PC1/3 表达调控
- 批准号:
10376866 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
Deciphering alpha-cell heterogeneity using a novel reporter mouse
使用新型报告小鼠解读α细胞异质性
- 批准号:
20K08895 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)