The Role of Arginine Transport on Pancreatic Alpha Cell Proliferation and Function
精氨酸转运对胰腺α细胞增殖和功能的作用
基本信息
- 批准号:10678248
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlpha CellAmino Acid TransporterAmino AcidsArginineBasic Amino Acid Transport SystemsBloodCRISPR/Cas technologyCalciumCationsCause of DeathCell ProliferationCell physiologyCell secretionCellsChemicalsClinical TrialsCo-ImmunoprecipitationsDataDevelopmentDiabetes MellitusDisease ProgressionEndocrineEnvironmentEnzyme InhibitionFRAP1 geneFailureFeedbackFellowshipFunctional disorderFutureGlucagonGluconeogenesisGlucoseGlutamineHormone secretionHumanHyperglycemiaHyperplasiaImageImmunohistochemistryImpairmentIncubatedIndividualInsulinInsulin-Dependent Diabetes MellitusInterruptionIslets of LangerhansKnock-outKnockout MiceLiverMeasuresMembraneMentorsMentorshipMetabolismModelingModificationMolecularMonitorMusNitric OxideNitric Oxide PathwayNon-Insulin-Dependent Diabetes MellitusNutrientPathway interactionsPhysiologicalProductionProliferatingPropertyProteinsQualifyingRegulationResearchResourcesRodent ModelRoleScientistSignal TransductionStructure of alpha Cell of isletStructure of beta Cell of isletSystemTestingTherapeuticTissuesTrainingTransgenic MiceWestern BlottingWorkarginaseblood glucose regulationcalcium indicatorcareercombatexperimental studyhyperglucagonemiain vivo Modelinsulin secretionisletmouse modelnew therapeutic targetprotein protein interactionsensorsmall moleculetool
项目摘要
Project Summary
The training strategy demonstrated in this document will help me advance my career to be an
independent research scientist in the field of diabetes. I propose to assess the role of arginine transport in the
regulation of pancreatic islet cell proliferation and hormone secretion. Disease progression of diabetes is
attributed to the inability of pancreatic β-cells to sufficiently secrete insulin and the combined failure to suppress
pancreatic α-cell secretion of glucagon. Inhibition of glucagon signaling reduces hyperglycemia for individuals
with diabetes.3 However, impairment of glucagon signaling leads to hyperglucagonemia, hyperaminoacidemia,
and α-cell proliferation.4,5 Our lab has identified a liver-α-cell axis that contributes to α-cell proliferation through
the accumulation of amino acids in the blood.4 We have identified two major amino acids that contribute to α-cell
proliferation, glutamine4 and arginine (unpublished data). However, the mechanisms underlying arginine
transport in the α-cell specifically and its contribution to α-cell proliferation and secretion are not well defined.
The cationic amino acid transporter SLC7A2 is highly expressed in mouse and human pancreatic α-cells.
Therefore, we hypothesize that hyperaminoacidemia that results from interrupted glucagon signaling
contributes to increased arginine transport promoting α-cell proliferation and dysfunction. Our
preliminary studies show that SLC7A2 is required for α-cell proliferation and glucagon secretion even when
challenged with strong membrane depolarizing agents challenging current cation-centric models of arginine
stimulated secretion (Figure 2 and 4). Using a new α-cell specific Slc7a2 knockout mouse model, we will unravel
the molecular mechanisms that lead to arginine-stimulated α-cell proliferation and glucagon secretion. To assess
whether SLC7A2 in α-cells is necessary for amino acid-dependent α-cell proliferation, Slc7a2 knockout in
immortalized mouse αTC1-6 cells and an inducible α-cell specific Slc7a2 knockout mouse model will be used to
assess changes in α-cell proliferation and mass. Additionally, the mechanism of arginine-induced mTORC1
activation will be targeted to determine if arginine activates mTORC1 through the inactivation of the CASTOR1-
GATOR2 pathway (Aim 1). Furthermore, to test the ability for arginine transport via SLC7A2 to modulate
glucagon secretion we will combine tools used in Aim 1 with chemical and genetically encoded Ca2+ sensors to
observe changes in α-cell glucagon secretion. We will also measure nitric oxide levels, and test the affect of
nitric oxide on glucagon secretion to understand the mechanism behind arginine-induced glucagon secretion
(Aim 2). Successfully accomplishing this study will enhance our current understanding of amino acid-induced α-
cell proliferation and function, as well as broaden the possibilities of therapeutic treatments for diabetes. My
training will be achieved through the execution of this study utilizing the fantastic resources and facilities provided
by Vanderbilt and thorough mentorship from my highly qualified mentors, Drs. Danielle Dean and David
Jacobsen.
项目摘要
本文档中展示的培训策略将帮助我发展职业成为一个
糖尿病领域的独立研究科学家。我建议评估精氨酸转运在
调节胰岛胰岛细胞增殖和骑马分泌。糖尿病的疾病进展是
归因于胰腺β细胞无法充分分泌胰岛素的能力,而抑制的综合失败
胰高血糖素的胰腺α细胞分泌。胰高血糖素信号传导的抑制可降低个体的高血糖
3然而,胰高血糖素信号传导的损害会导致高葡萄糖血症,高氨基酸血症,高氨基酸血症,
和α细胞增殖。4,5我们的实验室已经确定了一个肝脏-α细胞轴,该轴有助于通过
氨基酸在血液中的积累。4我们已经确定了两个有助于α细胞的主要氨基酸
增殖,谷氨酰胺4和精氨酸(未发表的数据)。但是,精氨酸的基础机制
特别定义了α细胞的转运及其对α细胞增殖和分泌的贡献。
阳离子氨基酸转运蛋白SLC7A2在小鼠和人胰腺α细胞中高度表达。
因此,我们假设由中断胰高血糖传导引起的高氨基酸血症
有助于增加精氨酸转运,从而促进α细胞增殖和功能障碍。我们的
初步研究表明,即使在
通过强膜去极化剂挑战挑战精氨酸的当前以阳离子为中心的模型
刺激的分泌(图2和4)。使用新的α细胞特异性SLC7A2基因敲除鼠标模型,我们将解开
导致精氨酸刺激的α细胞增殖和臀部分泌的分子机制。评估
α细胞中的SLC7A2是否对于氨基酸依赖性α细胞增殖需要SLC7A2敲除
永生的小鼠αTC1-6细胞和可诱导的α细胞特异性SLC7A2基因敲除小鼠模型将用于
评估α细胞增殖和质量的变化。此外,精氨酸诱导的MTORC1的机制
激活将是针对确定精氨酸是否通过castor1-灭活激活mTORC1的目标的。
Gator2途径(AIM 1)。此外,要测试通过SLC7A2调节精氨酸传输的能力
胰高血糖素的分泌我们将将AIM 1中使用的工具与化学和遗传编码的CA2+传感器相结合
观察α细胞斜肌分泌的变化。我们还将测量一氧化氮水平,并测试
一氧化氮在胰高血糖素分泌上,以了解精氨酸诱导的胰高血糖素分泌的机制
(目标2)。成功完成这项研究将增强我们当前对氨基酸诱导的α-的理解
细胞增殖和功能,并扩大糖尿病治疗治疗的可能性。我的
利用提供的精彩资源和设施的执行将实现培训
通过我高素质的心态,博士的范德比尔特和诚实的心态。丹妮尔·迪恩(Danielle Dean)和大卫(David)
雅各布森。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jade Elise Stanley其他文献
Jade Elise Stanley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
GACAT2调控线粒体胞吐促炎症微环境中牙周膜干细胞成牙骨质分化的机制研究
- 批准号:82301079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
转移相关中性粒细胞(TMAN)代谢重塑促三阴性乳腺癌嗜肺转移的作用与分子机制
- 批准号:82372823
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
受幽门螺杆菌调控的circ0088431通过提高肿瘤干细胞特性促进胃癌细胞对奥沙利铂耐药的机制研究
- 批准号:82303602
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
导电水凝胶负载iPSC来源细胞及piR-1245工程化外泌体通过改善局部微环境促进心肌梗死重建的机制
- 批准号:82360067
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Novel Roles for Phospholipids in Regulating Placental Function and in the Delivery of DHA to the Fetal Brain.
磷脂在调节胎盘功能和向胎儿大脑输送 DHA 方面的新作用。
- 批准号:
10363536 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Novel Roles for Phospholipids in Regulating Placental Function and in the Delivery of DHA to the Fetal Brain.
磷脂在调节胎盘功能和向胎儿大脑输送 DHA 方面的新作用。
- 批准号:
10655278 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Arginine regulation of alpha cell proliferation and function
精氨酸调节α细胞增殖和功能
- 批准号:
10609909 - 财政年份:2022
- 资助金额:
$ 3.3万 - 项目类别:
Identifying SREBP-1 activation mechanism in glioblastoma and its new role in regulating glutamine metabolism
鉴定胶质母细胞瘤中SREBP-1的激活机制及其在调节谷氨酰胺代谢中的新作用
- 批准号:
10553204 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别:
Identifying SREBP-1 activation mechanism in glioblastoma and its new role in regulating glutamine metabolism
鉴定胶质母细胞瘤中SREBP-1的激活机制及其在调节谷氨酰胺代谢中的新作用
- 批准号:
10334514 - 财政年份:2020
- 资助金额:
$ 3.3万 - 项目类别: