A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
基本信息
- 批准号:10683334
- 负责人:
- 金额:$ 21.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesBase SequenceBiomedical ResearchBiophysicsBiotechnologyCRISPR/Cas technologyCellsClustered Regularly Interspaced Short Palindromic RepeatsComputer AnalysisDNAData SetDevelopmentDirected Molecular EvolutionDiseaseDominant Genetic ConditionsEngineeringEventFamilial HypercholesterolemiaGenesGeneticGenetic DiseasesGoalsGuide RNAHandHereditary SpherocytosisHeterozygoteHumanIntuitionMachine LearningMolecularMutationNatureNucleic AcidsNucleotidesOncogenesOrganismPatientsProteinsProtocols documentationRNARNA SequencesRNA libraryRandomizedResearchResearch PersonnelRewardsRiskSeriesSingle Nucleotide PolymorphismSiteSpecificityStructureTechniquesTherapeuticTrainingVariantWorkautosomeclinical riskclinically relevantcofactorcomputerized toolsdesigngene therapygenetic variantgenome-widehigh throughput screeningimprovedinterestmachine learning modelmembermicroorganismnovelnovel therapeuticsoff-target mutationoff-target sitepreventtherapeutic targettool
项目摘要
CRISPR effectors like Cas9 and Cas12a have emerged as powerful tools in biomedical research for their ability
to introduce targeted mutations in living cells and, consequentially, for this ability they hold significant therapeutic
potential for treating genetic disorders—despite also carrying significant clinical risk that they may introduce ‘off-
target’ or unintended mutations. While the power of CRISPR effectors lies in the fact that the sequences they
recognize and target are complementary to a modular, ‘programmable’ segment of their RNA cofactors (their
‘guide RNAs’ or gRNAs), their mutational activity can be triggered at nucleotide sequences with imperfect
complementarity to their gRNAs as well, unpredictably. Obviously, the possibility of uncontrolled mutation raises
red flags for both patients and clinicians and so far, CRISPR gene therapies have been focused on highly
specialized genetic situations. Further improvements to CRISPR specificity are necessary, not only to mitigate
clinical risk, but also to drive new applications of CRISPR—for example, if single nucleotide variants (SNVs)
could be reliably discriminated, it would allow for allele-specific gene editing of autosomal dominant disorders,
where often we would need to discriminate between small sequence variations between the ‘healthy’ and
‘disease’ alleles but which current CRISPR technologies cannot consistently do. We recently demonstrated the
feasibility of an approach that is capable of improving CRISPR effector specificity by orders-of-magnitude, and
in such a way that it can be synergistically applied to many of the other previously-developed techniques to
improve specificity further. By adding extra nucleotides to the gRNA (x-gRNA) and designing the extended
sequence to form ‘hairpin’ secondary structures with the DNA-targeting segment of the gRNA (hairpin-gRNAs or
hp-gRNAs) that destabilize interactions with off-targets, we could generate x/hp-gRNAs that significantly limited
off-target activity while maintaining on-target mutational activity in CRISPR effector variants derived from four
different organisms and one engineered derivative. The long-term goal is therefore to understand the rules for
designing extended sequences in x-gRNAs that would result in ultra-specificity for divergent CRISPR effectors
at any CRISPR-targetable site. To achieve that goal, in this R21 we will perform an exhaustive screen of
randomized x-gRNA libraries targeting different clinically-relevant sites and identify what common sequence
and/or secondary-structure features of those x-gRNAs drive significant increases in specificity. While the
riskiness of this proposal is that there may not be “universal design rules”, per se, for all x/hp-gRNA designs
and targets, this work will nevertheless provide a practical (design-free) platform for researchers to empirically
generate ultra-specific x-gRNAs for any target of interest for any CRISPR effector. The likely reward is that
synergistic use of x-gRNAs (with engineered CRISPR effectors) has the potential to effectively abrogate the risk
of unintended mutation in CRISPR applications, and that combining our high-throughput approach with machine-
learning would allow new computational tools for anyone to produce, de novo, ultra- or allele-specific x-gRNAs.
Cas9 和 Cas12a 等 CRISPR 效应器因其能力而成为生物医学研究中的强大工具
在活细胞中引入靶向突变,因此,由于这种能力,它们具有重要的治疗作用
治疗遗传性疾病的潜力——尽管也存在重大的临床风险,即它们可能会引入“非遗传性疾病”
目标突变或非预期突变。虽然 CRISPR 效应子的力量在于它们的序列
识别和靶向与其RNA辅因子(它们的
‘引导RNA’或gRNA),它们的突变活性可以在不完美的核苷酸序列上触发
与它们的 gRNA 也具有不可预测的互补性。显然,失控突变的可能性增加了
对患者和临床医生来说都是危险信号,到目前为止,CRISPR 基因疗法一直高度关注
特殊的遗传情况。进一步改进 CRISPR 特异性是必要的,不仅是为了减轻
临床风险,同时也推动 CRISPR 的新应用——例如,单核苷酸变异 (SNV)
可以被可靠地区分,它将允许对常染色体显性遗传疾病进行等位基因特异性基因编辑,
我们经常需要区分“健康”和“健康”之间的微小序列变异
“疾病”等位基因,但目前的 CRISPR 技术无法始终如一地做到这一点。我们最近展示了
能够将 CRISPR 效应子特异性提高几个数量级的方法的可行性,以及
以这种方式,它可以协同应用于许多其他先前开发的技术
进一步提高特异性。通过向 gRNA (x-gRNA) 添加额外的核苷酸并设计扩展
序列与 gRNA 的 DNA 靶向片段形成“发夹”二级结构(发夹-gRNA 或
hp-gRNA)会破坏与脱靶相互作用的稳定性,我们可以生成显着限制的 x/hp-gRNA
源自四种的 CRISPR 效应子变体在保持脱靶活性的同时保持在靶突变活性
不同的生物体和一种工程衍生物。因此,长期目标是了解规则
在 x-gRNA 中设计扩展序列,这将为不同的 CRISPR 效应子带来超特异性
在任何 CRISPR 靶向位点。为了实现这一目标,在 R21 中,我们将进行详尽的筛选
针对不同临床相关位点的随机 x-gRNA 文库并确定哪些共同序列
这些 x-gRNA 的和/或二级结构特征可显着提高特异性。虽然
该提案的风险在于,对于所有 x/hp-gRNA 设计本身可能没有“通用设计规则”
和目标,这项工作仍然将为研究人员提供一个实用的(无设计)平台
为任何 CRISPR 效应子的任何感兴趣目标生成超特异性 x-gRNA。可能的奖励是
x-gRNA(与工程化 CRISPR 效应子)的协同使用有可能有效消除风险
CRISPR 应用中的意外突变,以及将我们的高通量方法与机器相结合
学习将使任何人都可以使用新的计算工具来从头生产超特异性或等位基因特异性的 x-gRNA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alan Josephs其他文献
Eric Alan Josephs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Alan Josephs', 18)}}的其他基金
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10511156 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:
Mechanism and Architecture of EndoMS/NucS Mutation Avoidance in Mycobacteria
分枝杆菌 EndoMS/NucS 突变避免的机制和架构
- 批准号:
9809008 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10581066 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10019571 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10663901 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
9797176 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10206198 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10455496 - 财政年份:2019
- 资助金额:
$ 21.83万 - 项目类别:
Forces and Long-Distance Coupling along DNA in the Mismatch Repair (MMR) Pathway
错配修复 (MMR) 途径中沿 DNA 的力和长距离耦合
- 批准号:
8783242 - 财政年份:2014
- 资助金额:
$ 21.83万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 21.83万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 21.83万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 21.83万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 21.83万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 21.83万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 21.83万 - 项目类别:














{{item.name}}会员




