Forces and Long-Distance Coupling along DNA in the Mismatch Repair (MMR) Pathway
错配修复 (MMR) 途径中沿 DNA 的力和长距离耦合
基本信息
- 批准号:8783242
- 负责人:
- 金额:$ 5.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAtomic Force MicroscopyBase Pair MismatchBase PairingBehaviorBindingBiological AssayBiomedical ResearchCellsChromatin LoopCleaved cellComplexCoupledCouplingDNADNA Repair PathwayDNA-Protein InteractionDefectDevelopmentDiffuseDisputesDistantEnsureEnzymatic BiochemistryEquilibriumEscherichia coliExcisionExonucleaseFluorescenceFluorescence MicroscopyGenomeGenome StabilityGenomicsHereditary DiseaseHereditary Nonpolyposis Colorectal NeoplasmsHomologous GeneHumanIndividualKineticsLeftLifeLightMaintenanceMalignant NeoplasmsMapsMeasuresMethodsMismatch RepairModelingMolecularMotionMutationNucleotidesOrganismPathway interactionsPhosphodiesterase IPhysiologicalPredispositionProteinsReplication ErrorResearchRoleScanningSiteTechniquesdimerendonucleasehelicaseinsertion/deletion mutationinsightparticleprotein complexpublic health relevanceresearch studysingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): In E. coli, genomic stability is maintained by a methyl-directed mismatch repair (MMR) pathway which reduces errors such as mismatched base-pairs or nucleotide insertions/deletions in newly- replicated DNA molecules by 1000-fold. Defects in the homologues of E. coli MMR proteins in humans are associated with increased rates of cancer development, and as E. coli MMR is among the best-studied DNA repair pathways, elucidation of its molecular mechanisms promises to shed new light into mutation avoidance within the cell. The MMR pathway is initiated when complexes of protein MutS identify and bind to a replication error (RE) on a newly-replicated DNA molecule and, with protein MutL, activate endonuclease MutH. MutH then nicks the newly-replicated strand at a hemi-methylated d(GATC) site that serves to discriminate between the new and original strands. This site can be over 1000 base-pairs away with no apparent directional bias (5'- or 3'- from the RE), but 3'-to-5' helicase UvrD is then loaded at the nick toward the RE and with the appropriate exonuclease removes the newly-replicated strand through the RE to be re- synthesized correctly. While the roles of individual MMR-associated proteins (MAPs) are well- established, how different MAP complexes efficiently coordinate the GATC-to-RE excision across large spans of DNA is still the subject of debate. Under physiological conditions MutS exists in an equilibrium of dimeric and tetrameric complexes, the latter having been recently observed on ''looped'' DNA molecules with REs; although the role of MutS tetramers is disputed, the looping of DNA by MutS tetramers is proposed to be how a RE is 'coupled' to a distant d(GATC) site- that is, how a d(GATC) site near the RE can be efficiently found and how excision is limited to the DNA between the two sites. This hypothesis regarding the role of DNA looping by MutS tetramers will be investigated by the following specific aims: (1) To directly measure the sequence- and error-specific binding forces between DNA and MAP complexes as the pathway progresses. The search for REs then d(GATC) sites by MAP complexes will be investigated at the single-molecule (s.m.) level using force spectroscopic (FS) techniques and a nanotechnological FS apparatus. Combination with fluorescence microscopy will allow us to determine the roles of specific MAP complexes, resolve the effects of co-factors on their behavior, and map their spatio-temporal interactions along DNA. (2) To elucidate the mechanistic details of RE-to-d(GATC) ''coupling'' and its relationship to DNA excision. Whether and how DNA looping alters the kinetics / efficiency of d(GATC) nicking, biased directional loading of UvrD, or excision termination will be addressed via atomic force microscopy, tethered particle motion experiments, and s.m. fluorescence assays.
描述(由申请人提供):在大肠杆菌中,基因组稳定性通过甲基指导的不匹配修复(MMR)途径维持,该途径减少了新抑制的DNA分子中的错误碱基对或核苷酸插入/缺失等误差。人类大肠杆菌MMR蛋白的同源物缺陷与癌症发展速率的增加有关,并且由于大肠杆菌MMR是研究最佳的DNA修复途径之一,因此阐明其分子机制有望在细胞内避免新的光转向突变。当蛋白质MUT的络合物识别并结合新复制的DNA分子上的复制误差(RE)时,就开始使用MMR途径。然后,Muth在半甲基化的D(GATC)部位上划分了新恢复的链,该链可区分新的和原始的链。该站点可以超过1000个碱基对,没有明显的方向性偏置(从RE到RE的5'-或3'-),但是然后将3'至5'Helicase UVRD装载在Nick朝向RE的nick上,并使用适当的外核酸酶移除,将新核酸酶拆下,可以正确地合成新的RE,以正确地合成。尽管已经确定了单个MMR相关蛋白(MAP)的作用,但不同的MAP复合物如何有效地协调大量DNA的GATC至RE切除,仍然是争论的主题。在生理条件下,Muts存在于二聚体和四聚体配合物的平衡中,最近在带有RES的“循环” DNA分子上观察到了后者。尽管有争议MUTS四聚体的作用,但建议通过MUTS四聚体对DNA进行循环,认为RE是如何“耦合”到遥远的D(GATC)位点的方式 - 即,在RE附近的D(GATC)位点如何有效地找到DNA,以及如何在两个站点之间进行切除,将其限制在两个位点之间的DNA之间。以下特定目的将研究有关MUTS四聚体循环DNA循环作用的这一假设:(1)直接测量DNA和MAP复合物之间的序列和误差特异性结合力随着途径的进展而进行。将使用力光谱(FS)技术和纳米技术FS设备在单分子(S.M.)水平上研究RES RES Res d(GATC)位点。结合荧光显微镜将使我们能够确定特定地图复合物的作用,解决副因素对其行为的影响,并沿DNA绘制其时空相互作用。 (2)阐明Re-to-to-to-D(GATC)'耦合''的机械细节及其与DNA切除的关系。 DNA循环如何改变D(GATC)缺口的动力学 /效率,UVRD的偏置定向载荷或切除终止将通过原子力显微镜,束缚粒子运动实验和S.M.来解决。荧光测定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alan Josephs其他文献
Eric Alan Josephs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Alan Josephs', 18)}}的其他基金
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10683334 - 财政年份:2022
- 资助金额:
$ 5.15万 - 项目类别:
A Molecular Grammar for Guide RNAs (gRNAs) with Engineered Secondary Structures
具有工程化二级结构的向导 RNA (gRNA) 的分子语法
- 批准号:
10511156 - 财政年份:2022
- 资助金额:
$ 5.15万 - 项目类别:
Mechanism and Architecture of EndoMS/NucS Mutation Avoidance in Mycobacteria
分枝杆菌 EndoMS/NucS 突变避免的机制和架构
- 批准号:
9809008 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10581066 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10019571 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10663901 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
9797176 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10206198 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
Complex Mechanisms of Mutation and Mutation Avoidance in Living Cells
活细胞突变和突变避免的复杂机制
- 批准号:
10455496 - 财政年份:2019
- 资助金额:
$ 5.15万 - 项目类别:
相似国自然基金
考虑残存发泡水影响的泡沫温拌沥青/集料界面粘附性衰减机理研究
- 批准号:51908194
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
化学状态及电场对石墨烯基材料纳米摩擦起电效应影响的研究
- 批准号:11904374
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基底弹性形变对纳米气泡界面形貌和力学性质影响的研究
- 批准号:11802055
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
钙钛矿金属有机卤化物太阳能电池材料的力电光多场耦合效应及其对光伏转换性能的影响
- 批准号:11772207
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
受限水对生物过程的影响研究
- 批准号:11674344
- 批准年份:2016
- 资助金额:67.0 万元
- 项目类别:面上项目
相似海外基金
Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
- 批准号:
10811154 - 财政年份:2023
- 资助金额:
$ 5.15万 - 项目类别:
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
- 批准号:
10646613 - 财政年份:2023
- 资助金额:
$ 5.15万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10540467 - 财政年份:2022
- 资助金额:
$ 5.15万 - 项目类别:
Reverse Engineering the Extracellular Neighborhood to Support the Functional Tissue Unit: A Use Case to Restore Ovarian Function
对细胞外邻域进行逆向工程以支持功能组织单位:恢复卵巢功能的用例
- 批准号:
10530993 - 财政年份:2022
- 资助金额:
$ 5.15万 - 项目类别:
Single-molecule dissection of a tumor- and virus-suppressing Smc complex involved in genome maintenance
参与基因组维护的肿瘤和病毒抑制 Smc 复合物的单分子解剖
- 批准号:
10536179 - 财政年份:2022
- 资助金额:
$ 5.15万 - 项目类别: