Editing the Neural Basis of Perception
编辑感知的神经基础
基本信息
- 批准号:10683290
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimal BehaviorArchitectureAreaBehaviorBehavioralBrainCell CommunicationCellsCodeCuesDetectionDevelopmentElementsForm PerceptionGoalsIndividualInterneuronsLeadLinkMapsMentorsMethodsModalityMonitorMotorMotor CortexMotor outputMovementMusNatureNeuronsOpsinOpticsOutputPatternPerceptionPhasePlayPopulationProcessPropertyPyramidal CellsRecurrenceResearchRoleSensorySignal TransductionSourceSpecificityStimulusSystemTechniquesTechnologyTimeTrainingVisualVisual CortexVisual PerceptionVisual SystemWritingawakebehavior influencebehavioral outcomecortex mappingdesignfunctional groupgenetic manipulationhippocampal pyramidal neuronin vivoinhibitory neuroninsightmotor behaviormulti-photonneuralneural circuitnew technologynoveloptogeneticsrecruitresponsesensory stimulusskillstool
项目摘要
Project Summary:
Neural computation requires the coordinated effort of thousands of interrelated and often genetically similar
neurons. These neurons form physically intermingled networks and subnetworks that act together to amplify
and strengthen sensory perceptions or select motor action. Such co-active ensembles are known to be
preferentially interconnected, and may represent a functional element of neural processing with unique
properties, such as pattern completion and competition between ensembles. In this proposal I will gain a
mechanistic understanding of how ensembles of co-active neurons interact by probing the function of
individual and groups of neurons in an awake mouse. I will examine: how ensembles of pyramidal cells
interact with other pyramidal cells and local inhibitory neurons in a visual task, how these ensembles influence
motor behavior, and how specific ensembles respond to information from other cortical areas. Despite the
potential importance of ensembles in cortical coding, the intermixed nature of these groups has made them
particularly hard to study. While conventional optogenetic techniques can manipulate genetically identified
neurons in a region, they are incapable of selectively manipulating intermingled neurons that differ only by their
functional properties. Critically, new multiphoton optogenetic techniques are beginning to allow manipulation of
cells chosen by their activity alone, however such techniques require further development. In the K99 phase of
this proposal, I will continue my training through the development of novel optical systems for multiphoton
stimulation and through use of these technique understand cortical function. By combining these new optical
techniques with novel opsins designed for in vivo multiphoton use that I have already developed, I now have
the ability to write in or edit neural activity across many neurons with a precision never before possible. By
altering ensemble activity during visual perception I will determine the causal contributions of individual
neurons as well as populations of neurons to sensory coding. In the R00 phase, through manipulations in
motor cortex I will unravel the behavioral impact of these groups, probing the role motor ensembles play in
motor action, and study how neurons interact across modalities. The ability to both edit and monitor the activity
of neural subnetworks is critical to gaining a mechanistic understanding of perception and action. The
conclusions we draw from this proposal will help to describe how all information is presented in the cortex, but
can only be reached with advanced techniques.
项目总结:
神经计算需要数以千计相互关联且通常遗传上相似的生物的协同努力
神经元。这些神经元形成物理上相互交织的网络和子网络,它们共同作用以放大
并加强感官感知或选择运动动作。这种共同活跃的乐团是已知的
优先相互连接,并且可以代表神经处理的功能元素,具有独特的
属性,如模式完成和乐团之间的竞争。在这项提议中,我将获得
从机制上理解协同活动神经元如何相互作用
清醒小鼠的个体和神经细胞群。我将研究:锥体细胞群是如何
在视觉任务中,与其他锥体细胞和局部抑制神经元相互作用,这些集合如何影响
运动行为,以及特定的合奏如何对来自其他皮质区域的信息做出反应。尽管
在大脑皮层编码中集合的潜在重要性,这些组的混合性质使得它们
特别难研究。虽然传统的光遗传技术可以操纵基因识别
一个区域中的神经元,它们不能选择性地操纵混合在一起的神经元,这些神经元只有在它们的
功能属性。重要的是,新的多光子光遗传技术开始允许操控
然而,这种技术还需要进一步的发展。在K99阶段
在这项提议中,我将通过开发新的多光子光学系统来继续我的培训
并通过刺激和使用这些技术了解皮质功能。通过将这些新的光纤
我已经开发了用于体内多光子使用的新型光学蛋白技术,我现在有了
能够以前所未有的精确度写入或编辑多个神经元的神经活动。通过
改变视觉感知过程中的整体活动我将确定个体的因果贡献
神经元以及神经元群体对感觉编码。在R00阶段,通过
运动皮质I将揭开这些群体的行为影响,探索运动合奏在
运动动作,并研究神经元如何跨通道相互作用。能够编辑和监控活动
对于获得对感知和行动的机械性理解来说,神经子网络是至关重要的。这个
我们从这个提案中得出的结论将有助于描述所有信息是如何在大脑皮层中呈现的,但是
只有用先进的技术才能达到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Anton Oldenburg其他文献
Ian Anton Oldenburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Anton Oldenburg', 18)}}的其他基金
Control of Glutamatergic Transmission by Acetylcholine Release in Striatum
通过纹状体中乙酰胆碱释放控制谷氨酸传输
- 批准号:
8465942 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Control of Glutamatergic Transmission by Acetylcholine Release in Striatum
通过纹状体中乙酰胆碱释放控制谷氨酸传输
- 批准号:
8501686 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
Control of Glutamatergic Transmission by Acetylcholine Release in Striatum
通过纹状体中乙酰胆碱释放控制谷氨酸传输
- 批准号:
8202619 - 财政年份:2011
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists