Compound Cardiovascular Activity Prediction Using Structural and Genomic Features
使用结构和基因组特征预测复合心血管活动
基本信息
- 批准号:10687235
- 负责人:
- 金额:$ 4.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse reactionsAgeAmino Acid SequenceBiochemicalBioinformaticsBiologicalBiological AssayBiological PhenomenaBiological ProcessCardiotoxicityCardiovascular AgentsCardiovascular systemCell physiologyCellsChemical StructureCollaborationsDataDatabasesDevelopmentDiseaseDrug ApprovalDrug toxicityEnvironmentFailureFutureGene ExpressionGene Expression ProfileGenesGenomicsGenotypeGoalsGraphHealthHumanInformaticsLaboratoriesLeadLearningLifeLinkMachine LearningMapsMarketingMentorshipMessenger RNAMethodsMolecularPatientsPatternPharmaceutical PreparationsPharmacogenomicsPhysiciansPlayProcessProgram DevelopmentProteinsProteomeProtocols documentationReactionReproducibilityResearchResearch PersonnelRoleSamplingScientific InquiryScientistStructural GenesStructureTechnologyTherapeuticThinkingTimeToxic effectTrainingTranscriptWithdrawalWorkbiological systemscareercostdrug developmentdrug structuredrug withdrawalexperienceexperimental studygene functionimprovedinsightlearning algorithmnext generationnovel strategiesnovel therapeuticspersonalized medicinepredictive toolsprogramsprotein foldingprotein functionprotein structureresponseskillsstrength trainingthree dimensional structuretooltranscriptomicsweb server
项目摘要
Project Summary
Unexpected cardiovascular activity plays a substantial role in therapeutic program failure leading to major loss
of patient life and research time. Therefore, it is imperative that steps be taken to understand and predict drug
cardiovascular activity. As the age of personalized medicine advances, the use of Gene Expression Signatures
(GES) has emerged as a new tool to describe biological processes. These GES consist of the quantitative levels
of mRNA expressed in a biological system as a result of a perturbation; however, they lack information about
underlying protein structure and function. It has been shown that Structural Gene Expression Signatures
(sGES), which integrate protein structure information derived from GES, produce reliable signatures that
capture cellular responses to perturbagens such as drugs. Specifically, preliminary results demonstrate how
these sGES capture underlying patterns that link compound structure with cardioactivity in cardyomyocites.
This preliminary data, combining computational and experimental work, was made possible by the outstanding
environment of scientific inquiry nurtured through the long-standing collaboration between this proposal's
sponsor and co-sponsor. The goal of this training is to hone skills that bridge the divide between informatics,
bench top experiments, and human health as well as develop fluency in scientific thinking that can be applied
to a future career as a physician scientist. The mentorship of this proposal's sponsors, the opportunities at
ISMMS to learn from diverse collaborations and experiences, as well as the scientific plan outlined in this
proposal all contribute to the strength of this training plan to achieve this goal. Specifically, this project will
expand the sGES tool through the addition of multiple features derived from structure and function, such as
secondary structure and protein disorder, and apply the resulting signatures to cardiovascular activity
understanding as well as prediction. The final sGES tool will be made publically available on a web server,
which has already been constructed. Next, profiles will be generated for compounds based on their signature,
structure, and recorded cardiovascular activity in the FDALabel database. The use of these profiles will be two
fold. The first will be as training data for an ensemble learning algorithm, which will predict drug structure
from signature and therefore provide a valuable first step toward generating de novo compounds from disease
signatures. The second use of these profiles will be to create a map linking chemical structure to cardiovascular
activity. The predicted cardiovascular activities from these computational aims will be experimentally validated
with cell based cardiotoxicity assays such as the hERG assay, which is a commonly used as a first line screen for
cardiovascular toxicity. Ultimately, the completion of this project will result in the development of useful,
validated, publically available tools for understanding as well as predicting cardiovascular activity and prepare
the investigator to conduct scientific research as a physician scientist.
项目摘要
意外的心血管活动在导致重大损失的治疗程序失败中起着重要作用
病人的生活和研究时间。因此,必须采取措施来了解和预测药物
心血管活动随着个性化医疗时代的发展,基因表达特征的使用
(GES)已经成为描述生物过程的新工具。这些GES包括定量水平
作为扰动的结果,在生物系统中表达的mRNA;然而,他们缺乏关于
蛋白质的结构和功能。已经表明,结构基因表达特征
(sGES),其整合来自GES的蛋白质结构信息,产生可靠的签名,
捕捉细胞对药物等干扰物的反应。具体而言,初步结果表明,
这些sGES捕获了将化合物结构与心肌细胞中的心脏活性联系起来的潜在模式。
这一初步数据,结合计算和实验工作,是由杰出的
科学探究的环境,通过这一建议的长期合作,
提案国和共同提案国。这项培训的目标是磨练技能,弥合信息学,
台式实验,人类健康以及发展流畅的科学思维,可以应用
成为一名医生科学家本提案发起人的指导,
ISMMS从各种合作和经验中学习,以及本报告中概述的科学计划。
所有的建议都有助于本培训计划的力量,以实现这一目标。具体而言,该项目将
通过添加源自结构和功能的多个功能来扩展sGES工具,例如
二级结构和蛋白质紊乱,并将产生的签名应用于心血管活动
理解和预测。最终的sGES工具将在网络服务器上提供,
它已经建成了。接下来,将根据化合物的特征生成化合物的特征,
结构,并在FDALabel数据库中记录心血管活动。这些配置文件的使用将是两个
折第一个将作为集成学习算法的训练数据,该算法将预测药物结构
因此为从疾病中重新产生化合物迈出了有价值的第一步
签名.这些图谱的第二个用途将是创建一个将化学结构与心血管疾病联系起来的图谱。
活动从这些计算目标预测的心血管活动将通过实验验证
使用基于细胞的心脏毒性测定,例如hERG测定,其通常用作用于以下的第一线筛选:
心血管毒性最终,该项目的完成将导致开发有用的,
经验证的,临床上可用的工具,用于理解和预测心血管活动,并准备
研究者作为医生科学家进行科学研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mavacamten improves symptoms in obstructive hypertrophic cardiomyopathy patients.
Mavacamten 可改善梗阻性肥厚性心肌病患者的症状。
- DOI:10.1016/j.tips.2023.02.005
- 发表时间:2023
- 期刊:
- 影响因子:13.8
- 作者:Zatorski,Nicole;Sobie,EricA;Schlessinger,Avner
- 通讯作者:Schlessinger,Avner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicole Zatorski其他文献
Nicole Zatorski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicole Zatorski', 18)}}的其他基金
Compound Cardiovascular Activity Prediction Using Structural and Genomic Features
使用结构和基因组特征预测复合心血管活动
- 批准号:
10544289 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Compound Cardiovascular Activity Prediction Using Structural and Genomic Features
使用结构和基因组特征预测复合心血管活动
- 批准号:
10315437 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
相似海外基金
A personalised approach to manage adverse reactions to CFTR modulator therapy in patients with cystic fibrosis
治疗囊性纤维化患者 CFTR 调节剂治疗不良反应的个性化方法
- 批准号:
MR/X00094X/1 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Research Grant
Mechanistic study of sulfa drug-induced severe cutaneous adverse reactions by focusing on HLA-A*11:01
以HLA-A*为重点的磺胺类药物致严重皮肤不良反应机制研究11:01
- 批准号:
22K06738 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identifying genetic polymorphisms and elucidating polygenic architecture associated with adverse reactions due to rituximab
识别遗传多态性并阐明与利妥昔单抗不良反应相关的多基因结构
- 批准号:
22K15910 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Severe Cutaneous Adverse Reactions Following Outpatient Antibiotic Therapy: A Population-based Study
门诊抗生素治疗后的严重皮肤不良反应:一项基于人群的研究
- 批准号:
449379 - 财政年份:2020
- 资助金额:
$ 4.61万 - 项目类别:
Studentship Programs
Significance of gamma-chain in severe cutaneous adverse reactions
伽马链在严重皮肤不良反应中的意义
- 批准号:
19K17779 - 财政年份:2019
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Historical sociology of adverse reactions related to vaccination in Japan
日本疫苗接种不良反应的历史社会学
- 批准号:
18K00267 - 财政年份:2018
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SEARCH (active Surveillance and Evaluation of Adverse Reactions in Canadian Healthcare) & PREVENT (Pharmacogenomics of Adverse Reaction EVEnts National Team)
SEARCH(加拿大医疗保健不良反应的主动监测和评估)
- 批准号:
379425 - 财政年份:2018
- 资助金额:
$ 4.61万 - 项目类别:
Operating Grants
IGF::OT::IGF SBIR Phase II: Topic 338 - Predictive Biomarkers of Adverse Reactions to Prostrate Cancer Radiotherapy
IGF::OT::IGF SBIR II 期:主题 338 - 前列腺癌放射治疗不良反应的预测生物标志物
- 批准号:
9576448 - 财政年份:2017
- 资助金额:
$ 4.61万 - 项目类别:
Development of in silico prediction method for idiosyncratic adverse reactions associated with HLA genotypes
与 HLA 基因型相关的特殊不良反应的计算机预测方法的开发
- 批准号:
16K15156 - 财政年份:2016
- 资助金额:
$ 4.61万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Characterising the Immune Response to Drugs That Cause Idiosyncratic Adverse Reactions
表征对引起特殊不良反应的药物的免疫反应
- 批准号:
367156 - 财政年份:2016
- 资助金额:
$ 4.61万 - 项目类别:
Studentship Programs