Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
基本信息
- 批准号:10687126
- 负责人:
- 金额:$ 41.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAngiographyAnticoagulant therapyArchitectureBiological MarkersBlood VesselsCardiogenic ShockCaringCause of DeathChest imagingClinicalClinical DataCodeCollaborationsComputational TechniqueComputerized Medical RecordComputersComputing MethodologiesDataData AnalyticsData SetDiagnosisDiagnosticDiagnostic ImagingEngineeringEnvironmentEvaluationExhibitsFosteringFundingGoalsHealth Care CostsHealth Insurance Portability and Accountability ActHealthcareHeart ArrestHemorrhageHospitalsImageIndividualInformation SystemsInstitutionIntelligenceLaboratoriesLearningLungMedical ImagingMedicineMethodsModelingMorbidity - disease rateMulticenter StudiesNational Heart, Lung, and Blood InstituteOutcomeOutcome MeasureOutpatientsPathology ReportPatient-Focused OutcomesPatientsPharmaceutical PreparationsPopulationPulmonary EmbolismPulmonary HypertensionRadiology SpecialtyRecurrenceResearchResuscitationRiskRisk AssessmentScanningSensitivity and SpecificitySeveritiesSiteSourceStatistical ModelsStructureSyndromeSystemTestingTherapeuticTimeTrainingUnited StatesUnited States National Library of MedicineX-Ray Computed Tomographybreast imagingcare deliverychronic thromboembolic pulmonary hypertensionclinical careclinical predictorsdata de-identificationdata repositorydeep learningdeep learning modeldemographicsdesigndigital medicineelectronic structureexperiencehealth care qualityhealth datahealth recordheterogenous datahigh riskhospital readmissionimaging biomarkerimaging studyimprovedimproved outcomeindexinglearning strategymortalitymortality riskneuroimagingoutcome predictionpatient safetypatient stratificationpoint of careprecision medicinepredictive modelingprimary outcomeprognostic modelprospectiveradiological imagingrisk stratificationsecondary outcomestem
项目摘要
Project Summary
Pulmonary embolism (PE) is a leading cause of death in the United States. Risk stratification for acute PE
treatment can reduce mortality. Risk scoring systems use clinical and laboratory electronic medical record
(EMR) data. In addition, biomarkers on computed tomography imaging can identify which patients with PE are
at high risk of death, independent of clinical data. Despite advances in clinical and image-driven scoring
systems, improving outcomes in acute PE depends on implementation of patient-specific EMR and imaging
data analytic prognostic models at the point of care.
The promise of digital medicine stems in part from the hope that by digitizing health data, we can leverage
computer information systems to understand and improve care. A method that can make use of these data to
predict patient-specific outcomes could not only provide major benefits for patient safety and healthcare quality
but also reduce healthcare costs. Unfortunately, most of this information is not yet included in predictive
statistical models that clinicians use to improve care delivery. This is because traditional computational
methods and techniques are insufficient at accurately analyzing such high volumes of heterogeneous data.
The goal of this proposal is to develop an automated precision medicine approach to achieve point-of-care risk
stratification for PE patient outcomes using a fusion deep learning strategy that can simultaneously analyze
health records and imaging data. An ideal PE risk-scoring system would not only predict mortality, but also
assess the risk for the many debilitating long-term consequences of acute PE. Such a system would,
therefore, facilitate optimal management and would likely require intelligent use of clinical, laboratory, and
imaging data together in order to provide accurate patient -specific risk scoring for multiple PE outcome
measures. In order to build a robust model, we propose to apply distributed training of deep learning models
across four large US healthcare institutions. By distributing the algorithm rather than the data, we avoid
sharing individually identifiable patient information. If successful, this project will be the first endeavor to
leverage diagnostic imaging (pixel) data in combination with structured and unstructured EMR data to predict
outcomes.
We have the ideal research team, experience, and methods to develop an automated risk-scoring system for
acute PE patients. Using a powerful combination of clinical, laboratory, and imaging data, this system will
provide patient-specific risk scoring for multiple PE outcome measures. Further, this project will foster multi-
center collaborations, which will afford us the opportunity to investigate the generalizability of our approach to
different populations of PE patients and to train, test, and ultimately deploy our automated predictive model in
a variety of clinical environments.
项目摘要
在美国,肺栓塞(PE)是导致死亡的主要原因。急性PE的危险分层
治疗可以降低死亡率。风险评分系统使用临床和实验室电子病历
(EMR)数据。此外,计算机断层成像上的生物标志物可以识别哪些PE患者是
有很高的死亡风险,与临床数据无关。尽管在临床和图像驱动评分方面取得了进展
系统,改善急性PE的预后取决于实施针对患者的EMR和成像
护理点的数据分析预后模型。
数字医疗的前景部分源于这样一种希望,即通过将健康数据数字化,我们可以利用
了解计算机信息系统,提高护理水平。一种可以利用这些数据的方法
预测特定于患者的结果不仅可以为患者的安全和医疗质量提供重大好处
而且还能降低医疗成本。不幸的是,这些信息中的大多数还没有包括在预测性信息中
临床医生用来改善护理服务的统计模型。这是因为传统的计算
在准确分析如此大量的异质数据方面,方法和技术是不够的。
这项提议的目标是开发一种自动化的精确医疗方法,以实现护理点风险
使用融合深度学习策略对PE患者的预后进行分层,该策略可以同时分析
健康记录和成像数据。一个理想的PE风险评分系统不仅可以预测死亡率,还可以
评估急性PE的许多衰弱的长期后果的风险。这样的系统将,
因此,促进最佳管理,可能需要智能地使用临床、实验室和
将成像数据放在一起,以便为多个PE结果提供准确的特定于患者的风险评分
措施。为了建立一个健壮的模型,我们提出应用深度学习模型的分布式训练
横跨美国四家大型医疗机构。通过分发算法而不是数据,我们避免了
共享可单独识别的患者信息。如果成功,这个项目将是第一个努力
利用诊断成像(像素)数据与结构化和非结构化EMR数据相结合来预测
结果。
我们拥有理想的研究团队、经验和方法来开发自动风险评分系统
急性PE患者。利用临床、实验室和成像数据的强大组合,该系统将
为多个PE结果测量提供特定于患者的风险评分。此外,该项目将促进多个
中心协作,这将使我们有机会调查我们的方法的普适性
对不同人群的PE患者进行培训、测试并最终部署我们的自动化预测模型
不同的临床环境。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MedShift: Automated Identification of Shift Data for Medical Image Dataset Curation
MedShift:自动识别医学图像数据集管理的移位数据
- DOI:10.1109/jbhi.2023.3275104
- 发表时间:2023
- 期刊:
- 影响因子:7.7
- 作者:Guo, Xiaoyuan;Gichoya, Judy Wawira;Trivedi, Hari;Purkayastha, Saptarshi;Banerjee, Imon
- 通讯作者:Banerjee, Imon
Developing medical imaging AI for emerging infectious diseases.
- DOI:10.1038/s41467-022-34234-4
- 发表时间:2022-11-18
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
President Biden's Executive Order on Artificial Intelligence-Implications for Health Care Organizations.
拜登总统关于人工智能的行政命令——对医疗保健组织的影响。
- DOI:10.1001/jama.2023.25051
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Mello,MichelleM;Shah,NigamH;Char,DantonS
- 通讯作者:Char,DantonS
Efficient adversarial debiasing with concept activation vector - Medical image case-studies.
使用概念激活向量进行有效的对抗性去偏 - 医学图像案例研究。
- DOI:10.1016/j.jbi.2023.104548
- 发表时间:2024
- 期刊:
- 影响因子:4.5
- 作者:Correa,Ramon;Pahwa,Khushbu;Patel,Bhavik;Vachon,CelineM;Gichoya,JudyW;Banerjee,Imon
- 通讯作者:Banerjee,Imon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CURTIS P LANGLOTZ其他文献
CURTIS P LANGLOTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CURTIS P LANGLOTZ', 18)}}的其他基金
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10598324 - 财政年份:2022
- 资助金额:
$ 41.44万 - 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10464905 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10298306 - 财政年份:2021
- 资助金额:
$ 41.44万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6073984 - 财政年份:2000
- 资助金额:
$ 41.44万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6300377 - 财政年份:2000
- 资助金额:
$ 41.44万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6102654 - 财政年份:1999
- 资助金额:
$ 41.44万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6484360 - 财政年份:1999
- 资助金额:
$ 41.44万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6682889 - 财政年份:1999
- 资助金额:
$ 41.44万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6269466 - 财政年份:1998
- 资助金额:
$ 41.44万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6237166 - 财政年份:1997
- 资助金额:
$ 41.44万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 41.44万 - 项目类别:
Research Grant