Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
基本信息
- 批准号:10598324
- 负责人:
- 金额:$ 31.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAreaAwardBiologicalBlack raceClinicalClinical DataCollaborationsCommunicationComputerized Medical RecordConflict (Psychology)ConsensusDataDecision MakingDevelopmentDiagnostic ImagingEnvironmentEthical IssuesEthicsEthnic OriginFosteringFutureGoalsHealthcareHumanImageIndividualInformation SystemsInstitutionIntelligenceInterviewInvestigationLabelLaboratoriesLatinxLegLife Cycle StagesMeasuresMedicaidMethodologyMethodsModelingMulticenter StudiesNonmaleficenceOutcomeOutcome MeasureOutputParentsPatient-Focused OutcomesPatientsPerformancePopulationProcessPulmonary EmbolismPulmonologyRaceRadiology SpecialtyRecommendationResearchResearch PersonnelResolutionRiskSensitivity and SpecificitySeriesSiteStructureSubgroupSystemTestingThoracic RadiographyTrainingUnderserved PopulationWorkbasecomputer sciencedeep learningdeep learning modeldesigneffectiveness testingexperiencehealth recordlearning strategymortalityoutcome predictionpoint of carepredictive modelingpressurerisk stratificationsex
项目摘要
Project Summary
The goal of the parent award is to develop an automated healthcare AI (AI-HC) to achieve point-of-care risk
stratification for pulmonary embolism (PE) patient outcomes using a fusion deep learning strategy that can
simultaneously analyze health records and imaging data. An ideal PE risk-scoring system would not only
predict mortality, but also assess the risk for the many debilitating long-term consequences of acute PE. Such
a system would, therefore, facilitate optimal management and would likely require intelligent use of clinical,
laboratory, and imaging data together in order to provide accurate patient -specific risk scoring for multiple PE
outcome measures. In order to build a robust model, the parent award will apply distributed training of deep
learning models across four large US healthcare institutions. Distributing the algorithm rather than the data
avoids sharing individually identifiable patient information. If successful, this parent award will be the first
endeavor to leverage diagnostic imaging (pixel) data in combination with structured and unstructured electronic
medical record (EMR) data to predict outcomes. Using a powerful combination of clinical, laboratory, and
imaging data, this system will provide patient-specific risk scoring for multiple PE outcome measures. Further,
the parent award fosters multi- center collaborations, including investigation of the generalizability of the
approach to different populations of PE patients and to train, test, and ultimately deploy the automated
predictive model in a variety of clinical environments.
Partnering with the parent award presents a unique opportunity to address two pressing ethical questions: How
do you anticipate, identify, and address ethical problems with AI-HC before they cause harm? How do you
document and communicate important ethical constraints with AI-HC, once identified, to multiple users
(including the developers of the AI)? The supplement team has worked closely with the parent award
investigators on ethics of AI-HC generally and on developing approaches to examine AI-HC. In this
supplement we will pilot an approach to: 1) identify ethical issues that may emerge with development and
multi-site deployment of AI-HC for PE; and 2) develop consensus on how to address these ethical issues. We
will also 3) develop consensus on an ethics “label” to communicate identified and addressed ethical
constraints. In doing 1, 2 & 3 we will refine a generalizable approach for identifying and addressing ethical
challenges with an AI-HC and a roadmap for how to communicate identified ethical concerns for AI-HC.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CURTIS P LANGLOTZ其他文献
CURTIS P LANGLOTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CURTIS P LANGLOTZ', 18)}}的其他基金
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10687126 - 财政年份:2021
- 资助金额:
$ 31.06万 - 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10464905 - 财政年份:2021
- 资助金额:
$ 31.06万 - 项目类别:
Population-level Pulmonary Embolism Outcome Prediction with Imaging and Clinical Data: A Multi-Center Study
利用影像学和临床数据预测人群水平的肺栓塞结果:一项多中心研究
- 批准号:
10298306 - 财政年份:2021
- 资助金额:
$ 31.06万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6073984 - 财政年份:2000
- 资助金额:
$ 31.06万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6300377 - 财政年份:2000
- 资助金额:
$ 31.06万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6102654 - 财政年份:1999
- 资助金额:
$ 31.06万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6484360 - 财政年份:1999
- 资助金额:
$ 31.06万 - 项目类别:
DEVELOPMENT OF A KNOWLEDGE-BASED IMAGE REPORTING SYSTEM
基于知识的图像报告系统的开发
- 批准号:
6682889 - 财政年份:1999
- 资助金额:
$ 31.06万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6269466 - 财政年份:1998
- 资助金额:
$ 31.06万 - 项目类别:
ITERATIVE MODELING AND EVALUATION OF THE CLINICAL AND ECONOMIC OUTCOMES OF PAC
PAC 临床和经济结果的迭代建模和评估
- 批准号:
6237166 - 财政年份:1997
- 资助金额:
$ 31.06万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 31.06万 - 项目类别:
Research Grant