Single-Cell Analysis of Aging-Associated 4D Nucleome in the Human Hippocampus
人类海马中与衰老相关的 4D 核组的单细胞分析
基本信息
- 批准号:10687008
- 负责人:
- 金额:$ 60.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge MonthsAge-associated memory impairmentAgingAlzheimer&aposs DiseaseAnimalsArchitectureAreaAtlasesAutopsyBiological ProcessBrainBrain regionBrain-Derived Neurotrophic FactorCaringCellsChromatinChromatin StructureCognitiveComplementDNADNA MethylationDNA methylation profilingDataDietElderlyEnhancersExerciseExhibitsGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGenomicsGoalsHealthHippocampusHumanImpaired cognitionIndividualInterventionJointsLongevityMapsMeasuresMedicalMethodsMolecularMolecular ProfilingMonitorMusNeurodegenerative DisordersNuclearPatternPhysical ExercisePhysical activityPopulationProcessRegulationRegulator GenesResearchResolutionRoleRunningSampling StudiesSmokingTestingUncertaintyUnited StatesWorkage groupage relatedaging brainbrain cellcell typecognitive functioncohortepigenomeexercise interventiongenomic datahuman datahuman subjectimprovedinterestlifestyle factorsmethylomemind controlmouse modelmultiple omicsneural circuitneurotrophic factornew therapeutic targetnormal agingnovelnovel strategiesprogramspromoterresponsesedentarysingle cell analysistooltranscriptome
项目摘要
Project Summary / Abstract
Age-related cognitive decline is an important concern in the United States, as approximately 20% of the
US population is expected to be age 65 or older by year 2030. Understanding the molecular mechansims of
brain aging to prolong healthy cognitive function is therefore increasingly important as the population ages and
older people remain in the work force. Brain cells exhibit profound and heterogeneous changes during aging at
molecular and cellular levels. The simple intervention of physical exercise has emerged as a major positive
modulator of cognitive function in aging. In response to RFA-RM-20-005, we have formed an interdisciplinary
team with expertise in single-cell genomics, neural circuitry, and aging, to investigate age- and physical activity-
related changes of 4D nucleome in post-mortem human brain hippocampus cells across the lifespan with single-
cell resolution. We hypothesize that cell-type-specific re-organization of nucleome occurs in the human
hippocampal brain region during aging and with physical activity. The changes in nucleome in turn control brain
epigenome and transcriptome, modulating neural circuit functionality. The “Methyl-HiC”, a new approach for
joint profiling of DNA methylation and chromatin contacts in single cells, combined with “Paired-seq”, an ultra-
high-throughput method for single-cell joint analysis of open chromatin and transcriptome, will be used to
interrogate the chromatin architecture along with DNA methylation, chromatin accessibility and gene expression
in the human hippocampus. In Aim 1, we will determine changes in nucleome in major cell types of post-mortem
human hippocampus across the life-span with 4 age ranges (20–39, 40–59, 60–79, and 80–99 years old). We
will further correlate these changes in nucleome with epigenome and transcriptome in each cell type, to identify
vulnerable cell types during aging, and uncover potential gene regulatory programs that could be impacted by
aging. In Aim 2, we will determine how physical activity modifies and restores nucleome in specific human
hippocampal cell types. We will study two age-matched cognitively–healthy cohorts (70-99 years old) with either
high level or low level physical activity, as measured by wearable activity monitors. We will correlate restorative
effects on nucleome with epigenome and transcriptome. In Aim 3, we will map how aging and exercise alter
nucleome in specific hippocampal cell types with highly controlled quantifiable physical activity in the mouse
model, for comparison with human data. These mouse studies allow the exercise variable to be investigated in
isolation from effects of other lifestyle factors that can affect hippocampal nucleome, which is not possible with
human subjects. The proposed research will help to transform our ability to understand the mechanisms of
chromatin organization and function in the context of human brain aging.
项目摘要 /摘要
与年龄有关的认知下降是美国的重要问题,因为大约有20%
预计到2030年,美国人口将年满65岁。了解分子机制
因此,随着人口年龄的年龄和
老年人仍然是劳动力。脑细胞在衰老期间暴露了深刻和异质变化
分子和细胞水平。体育锻炼的简单干预已成为主要的积极
衰老中认知功能的调节剂。为了响应RFA-RM-20-005,我们形成了一个跨学科
团队具有单细胞基因组学,神经回路和衰老方面的专业知识,以研究年龄和身体活动 -
尸体后人脑海马细胞中4D核心的相关变化,整个生命周期
细胞分辨率。我们假设核的细胞类型特异性重组发生在人
衰老和体育活动期间海马大脑区域。核心依次控制大脑的变化
表观基因组和转录组,调节神经回路功能。 “甲基-HIC”,一种新方法
单个细胞中DNA甲基化和染色质接触的联合分析,与“配对seq”结合,一种超高
用于开放染色质和转录组的单细胞关节分析的高通量方法将用于
询问染色质结构以及DNA甲基化,染色质访问性和基因表达
在AIM 1中,我们将确定主要细胞类型后核心的变化
人类海马遍布4岁范围(20-39、40-59、60-79和80-99岁)。
将进一步将核心中的这些变化与表观基因组和每个细胞类型的转录组相关联,以识别
衰老期间脆弱的细胞类型,并发现可能受到可能受到影响的潜在基因调节程序
老化。在AIM 2中,我们将确定体育活动如何修饰和恢复特定人类的核
海马细胞类型。我们将研究两个年龄匹配的认知 - 健康队列(70-99岁)
通过可穿戴活动监测器测量的高水平或低水平的体育活动。我们将关联恢复
对核心与表观基因组和转录组的影响。在AIM 3中,我们将绘制衰老和运动如何改变
特定海马细胞类型中具有高度控制的量化物理活动的核心
模型,用于与人类数据进行比较。这些小鼠研究允许在
与可能影响海马核心的其他生活方式因素的影响分离出来,这是不可能的
人类主题。拟议的研究将有助于改变我们了解的能力
在人脑衰老的背景下,染色质组织和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bing Ren其他文献
Bing Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bing Ren', 18)}}的其他基金
Broadly Accessible Technologies for Single-cell Joint Analysis of Transcriptome and Epigenome
转录组和表观基因组单细胞联合分析的广泛可用技术
- 批准号:
10383385 - 财政年份:2022
- 资助金额:
$ 60.31万 - 项目类别:
Comparative Single-Cell Epigenomic Analysis of AD-like Pathogenesis in Unconventional Animal Models
非常规动物模型中 AD 样发病机制的比较单细胞表观基因组分析
- 批准号:
10682624 - 财政年份:2021
- 资助金额:
$ 60.31万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
10240102 - 财政年份:2021
- 资助金额:
$ 60.31万 - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications and Transcriptome
组蛋白修饰和转录组的高通量单细胞联合测定
- 批准号:
10324108 - 财政年份:2021
- 资助金额:
$ 60.31万 - 项目类别:
Epigenomic analysis of neural circuits in Alzheimer's disease mouse models
阿尔茨海默病小鼠模型神经回路的表观基因组分析
- 批准号:
10615701 - 财政年份:2020
- 资助金额:
$ 60.31万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
9247463 - 财政年份:2017
- 资助金额:
$ 60.31万 - 项目类别:
High throughput CRISPR-mediated functional validation of regulatory elements
高通量 CRISPR 介导的调控元件功能验证
- 批准号:
9420657 - 财政年份:2017
- 资助金额:
$ 60.31万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 60.31万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 60.31万 - 项目类别:
The impact of auditory access on the development of speech perception
听觉访问对言语感知发展的影响
- 批准号:
10677429 - 财政年份:2023
- 资助金额:
$ 60.31万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10702045 - 财政年份:2023
- 资助金额:
$ 60.31万 - 项目类别: