Development and Clinical Implementation of an Artificial Intelligence Tool to Predict Risk of Upgrade of Ductal Carcinoma In Situ

预测导管原位癌升级风险的人工智能工具的开发和临床实施

基本信息

  • 批准号:
    10685615
  • 负责人:
  • 金额:
    $ 26.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT This proposal presents a five-year career development plan focused on data science and artificial intelligence (AI) and the application of AI to improve outcomes in women with ductal carcinoma in situ (DCIS). The candidate is a Radiologist at MGH and an Assistant Professor of Radiology at Harvard Medical School. The proposal builds upon the candidate’s previous research and clinical experiences in breast imaging and also upon a strong ongoing research partnership between MGH and MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). The candidate’s long-term career goal is to become a leader in academic breast imaging by investigating and applying AI to critical areas in breast cancer detection, diagnosis, and treatment. The proposed research project and advanced didactic training at Harvard and MIT will position the candidate with a unique set of knowledge and skills in data science and AI that will enable her to develop an independent cancer research program that focuses on applications of AI to breast imaging. The incidence of DCIS has dramatically increased over the past 40 years, with an estimated 63,960 diagnoses in 2018. Current guidelines recommend that DCIS be treated with surgery, radiation, and endocrine therapy, but there remains considerable controversy over whether this regimen represents overtreatment for those women with indolent non-hazardous DCIS. Given concerns about overtreatment, there are currently three randomized controlled trials underway to evaluate the safety and efficacy of active surveillance versus standard treatment, and critical to the implementation of active surveillance programs is careful selection of eligible patients. The goal of the proposed project is to develop a robust AI tool that incorporates clinical data, mammographic imaging, and biopsy histopathology slides for pre-operatively predicting the risk of concurrent invasive cancer in women with DCIS. The tool will be built using machine learning, deep learning, and computer vision. Incorporation of mammographic imaging and histopathology slides into the AI tool will be supported by the MGH & BWH Center for Clinical Data Science (CCDS) and the MGH Department of Pathology. After development and validation of the AI tool based on a retrospective cohort of 1,400 women diagnosed with DCIS at MGH, the tool will then be integrated into MGH’s mammography information system and used to categorize new cases of DCIS. The specific aims are: (1) to develop a robust AI tool that predicts the risk of upgrade of DCIS diagnosed by image-guided core needle biopsy to invasive cancer at surgery and (2) to implement and evaluate the AI tool in clinical practice. Use of this tool could identify the subset of women who are appropriate candidates for active surveillance, decrease the morbidity and costs of overtreatment, and support more targeted and precise treatment options for women diagnosed with DCIS.
项目总结/文摘

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Quest to Reduce the Use of Gadolinium-based Contrast Agents: AI May Provide a Solution.
寻求减少钆造影剂的使用:人工智能可能提供解决方案。
  • DOI:
    10.1148/radiol.230325
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.7
  • 作者:
    Bahl,Manisha
  • 通讯作者:
    Bahl,Manisha
The unintended consequences of artificial intelligence and high-risk triaging.
人工智能和高风险分类的意外后果。
  • DOI:
    10.1007/s00330-023-10553-y
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Bahl,Manisha
  • 通讯作者:
    Bahl,Manisha
Contrast-enhanced Mammography: An Emerging Modality in Breast Imaging.
对比增强乳房X线摄影:乳房成像的新兴方式。
  • DOI:
    10.1148/radiol.212856
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    19.7
  • 作者:
    Bahl,Manisha
  • 通讯作者:
    Bahl,Manisha
Evaluating the Use of ChatGPT to Accurately Simplify Patient-centered Information about Breast Cancer Prevention and Screening.
评估 ChatGPT 的使用,以准确简化有关乳腺癌预防和筛查的以患者为中心的信息。
  • DOI:
    10.1148/rycan.230086
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haver,HanaL;Gupta,AnujK;Ambinder,EmilyB;Bahl,Manisha;Oluyemi,EniolaT;Jeudy,Jean;Yi,PaulH
  • 通讯作者:
    Yi,PaulH
Invited Commentary: The Power and Promise of Artificial Intelligence for Digital Breast Tomosynthesis.
特邀评论:人工智能在数字乳腺断层合成中的力量和前景。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Manisha Bahl其他文献

Manisha Bahl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Manisha Bahl', 18)}}的其他基金

Development and Clinical Implementation of an Artificial Intelligence Tool to Predict Risk of Upgrade of Ductal Carcinoma In Situ
预测导管原位癌升级风险的人工智能工具的开发和临床实施
  • 批准号:
    10436257
  • 财政年份:
    2019
  • 资助金额:
    $ 26.13万
  • 项目类别:
Development and Clinical Implementation of an Artificial Intelligence Tool to Predict Risk of Upgrade of Ductal Carcinoma In Situ
预测导管原位癌升级风险的人工智能工具的开发和临床实施
  • 批准号:
    9806162
  • 财政年份:
    2019
  • 资助金额:
    $ 26.13万
  • 项目类别:
Development and Clinical Implementation of an Artificial Intelligence Tool to Predict Risk of Upgrade of Ductal Carcinoma In Situ
预测导管原位癌升级风险的人工智能工具的开发和临床实施
  • 批准号:
    9974496
  • 财政年份:
    2019
  • 资助金额:
    $ 26.13万
  • 项目类别:
Development and Clinical Implementation of an Artificial Intelligence Tool to Predict Risk of Upgrade of Ductal Carcinoma In Situ
预测导管原位癌升级风险的人工智能工具的开发和临床实施
  • 批准号:
    10206069
  • 财政年份:
    2019
  • 资助金额:
    $ 26.13万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 26.13万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 26.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了