Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
基本信息
- 批准号:10687835
- 负责人:
- 金额:$ 37.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AmputationAnimalsApoptosisAutomobile DrivingBehaviorBiochemistryBiological AssayCell CycleCell Cycle ArrestCell Differentiation processCell divisionCellsChemicalsCuesDNADNA RepairEpidermal Growth Factor ReceptorExtracellular Signal Regulated KinasesFibroblast Growth Factor ReceptorsFoundationsFutureG2/M Checkpoint PathwayGenesGoalsHomeostasisInduction of ApoptosisInjuryKineticsLigandsMembraneMethodsMicrotubulesMitogen-Activated Protein KinasesMolecularMonitorMyocardial InfarctionNatural regenerationNocodazoleOrganPathway interactionsPharmacologyPharyngeal structurePhosphorylationPhosphotransferasesPhysiologicalPlanariansPlatyhelminthsPluripotent Stem CellsProliferatingRNA InterferenceRNA interference screenRadiationRegenerative MedicineRegenerative capacitySignal PathwaySignal TransductionStrokeSurgical InjuriesTechnologyTestingTissuesTranscriptTranscriptional ActivationUp-Regulationcell behaviordesignembryonic stem cellflexibilityforkhead proteingene conservationgene regulatory networkimprovedinjuredknock-downlensmodel organismorgan regenerationprogenitorreceptorregenerative approachresponseresponse to injurysingle cell sequencingsingle-cell RNA sequencingstem cell differentiationstem cell populationstem cell proliferationstem cellstissue regenerationtranscriptometranscriptome sequencing
项目摘要
Abstract
Successful regeneration of tissues requires transient increases in stem cell plasticity, proliferation, and
differentiation, in order to produce new cells that integrate with preexisting tissues and organs. Pathways
governing these critical behaviors have been identified, but how injury signals can trigger stem cell proliferation
and differentiation of cells necessary for regeneration remains poorly understood. In most model organisms,
regenerative capacity is limited and stem cells are scarce, which has made it difficult to pinpoint the
mechanisms regulating stem cell proliferation and differentiation after injury. By contrast, the planarian
flatworm Schmidtea mediterranea has abundant stem cells that are activated by injury and fuel continuous
regeneration. Like embryonic stem cells, planarian stem cells have the capacity to differentiate into any type of
tissue. These pluripotent stem cells can be readily identified, monitored, purified, and thoroughly profiled at the
molecular level. We recently made two important discoveries that form the foundation of this proposal. First,
injury of any type appears to protect stem cells from lethal radiation, because it halts the cell cycle and fewer
stem cells undergo apoptosis. Second, we pioneered a chemical method to selectively remove a single organ,
the pharynx. Pharynx regeneration requires the upregulation of the conserved Forkhead transcription factor
FoxA in a discrete subset of stem cells immediately after this targeted injury. We find that the extracellular
signal-regulated kinase (ERK) is a central driver of these behaviors. ERK promotes differentiation in cultured
stem cells, but how it is activated after injury is poorly understood. Together, these findings establish our
central hypothesis, which is that injury synchronizes the cell cycle, enabling local cues to channel stem cell
differentiation toward discrete cell fates. In Aim 1, we will determine how injury induces cell cycle arrest in stem
cells after radiation. We will examine DNA repair and test the function of conserved genes that are upregulated
after injury. In Aim 2, we will dissect the mechanisms driving organ-specific regeneration by purification and
single-cell sequencing of stem cells proliferating after organ loss. We will identify receptors enriched on these
cells, and test their function in organ regeneration to determine if they act upstream of FoxA. In Aim 3, we will
identify the upstream receptors that activate MAP kinase signaling in stem cells with combinations of RNAi,
pharmacology and biochemistry. This proposal exploits our ability to challenge stem cells with precise insults,
providing a lens into the mechanisms that enable flexible stem cell responses during injury and homeostasis.
Understanding the molecular mechanisms that govern stem cell behavior in a physiologically-relevant context
will inform the design of future strategies for regenerative medicine technologies.
摘要
组织的成功再生需要干细胞可塑性、增殖和分化的瞬时增加。
分化,以便产生与先前存在的组织和器官整合的新细胞。途径
控制这些关键行为的机制已经确定,但损伤信号如何触发干细胞增殖
并且对于再生所必需的细胞的分化仍然知之甚少。在大多数模式生物中,
再生能力有限,干细胞稀缺,这使得很难确定
损伤后调节干细胞增殖和分化的机制。相比之下,
扁虫Schmidtea mediterranea具有丰富的干细胞,这些干细胞被损伤激活并持续提供燃料。
再生与胚胎干细胞一样,真涡虫干细胞具有分化成任何类型的细胞的能力。
组织.这些多能干细胞可以容易地鉴定、监测、纯化,并在体外进行彻底的分析。
分子水平。我们最近有两个重要的发现,构成了这个提议的基础。第一、
任何类型的损伤似乎都能保护干细胞免受致命辐射的伤害,因为它会停止细胞周期,
干细胞经历凋亡。其次,我们开创了一种化学方法,选择性地切除一个器官,
咽部咽再生需要上调保守的Forkhead转录因子
在这种靶向损伤后立即在干细胞的离散亚群中表达FoxA。我们发现细胞外
信号调节激酶(ERK)是这些行为的中心驱动力。ERK促进细胞分化
干细胞,但它是如何激活损伤后知之甚少。总之,这些发现确立了我们的
中心假设,即损伤扰乱细胞周期,使局部线索能够引导干细胞
向离散细胞命运分化。在目标1中,我们将确定损伤如何诱导干细胞中的细胞周期阻滞,
辐射后的细胞我们将研究DNA修复和测试保守基因的功能,
伤后在目标2中,我们将剖析通过纯化驱动器官特异性再生的机制,
器官丧失后干细胞增殖的单细胞测序。我们将鉴定出这些受体
细胞,并测试它们在器官再生中的功能,以确定它们是否作用于FoxA的上游。在目标3中,我们
用RNAi的组合鉴定在干细胞中激活MAP激酶信号传导的上游受体,
药理学和生物化学。这项提议利用了我们用精确的损伤来挑战干细胞的能力,
提供了一个透镜进入机制,使灵活的干细胞反应在损伤和稳态。
了解在生理相关背景下支配干细胞行为的分子机制
将为再生医学技术的未来战略设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Elizabeth Adler其他文献
Carolyn Elizabeth Adler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Elizabeth Adler', 18)}}的其他基金
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10264039 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10474437 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10580319 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10387688 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10810170 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10099086 - 财政年份:2020
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7612047 - 财政年份:2008
- 资助金额:
$ 37.31万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7485945 - 财政年份:2008
- 资助金额:
$ 37.31万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 37.31万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 37.31万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 37.31万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 37.31万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)