Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
基本信息
- 批准号:10580319
- 负责人:
- 金额:$ 20.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelApoptosisAutomobile DrivingBehaviorBiochemistryCell CycleCell Cycle ArrestCell Differentiation processCellsChemicalsCuesDNA RepairExtracellular Signal Regulated KinasesFoundationsFutureGenesGoalsHomeostasisInjuryMethodsMitogen-Activated Protein KinasesMolecularMonitorMyocardial InfarctionNatural regenerationOrganPathway interactionsPharmacologyPharyngeal structurePhysiologicalPlanariansPlatyhelminthsPluripotent Stem CellsProliferatingRNA InterferenceRadiationRegenerative MedicineRegenerative capacitySignal PathwaySignal TransductionStrokeSurgical InjuriesTechnologyTestingTissuesUp-Regulationcell behaviordesignembryonic stem cellflexibilityforkhead proteinimprovedlensorgan regenerationreceptorregenerative approachresponseresponse to injurysingle cell sequencingstemstem cell differentiationstem cell proliferationstem cellstissue regeneration
项目摘要
Abstract
Successful regeneration of tissues requires transient increases in stem cell plasticity, proliferation, and
differentiation, in order to produce new cells that integrate with preexisting tissues and organs. Pathways
governing these critical behaviors have been identified, but how injury signals can trigger stem cell
proliferationand differentiation of cells necessary for regeneration remains poorly understood. In most
model organisms, regenerative capacity is limited and stem cells are scarce, which has made it difficult to
pinpoint the mechanisms regulating stem cell proliferation and differentiation after injury. By contrast, the
planarian flatworm Schmidtea mediterranea has abundant stem cells that are activated by injury and fuel
continuous regeneration. Like embryonic stem cells, planarian stem cells have the capacity to differentiate
into any type oftissue. These pluripotent stem cells can be readily identified, monitored, purified, and
thoroughly profiled at themolecular level. We recently made two important discoveries that form the
foundation of this proposal. First, injury of any type appears to protect stem cells from lethal radiation,
because it halts the cell cycle and fewer stem cells undergo apoptosis. Second, we pioneered a chemical
method to selectively remove a single organ,the pharynx. Pharynx regeneration requires the upregulation
of the conserved Forkhead transcription factor FoxA in a discrete subset of stem cells immediately after
this targeted injury. We find that the extracellular signal-regulated kinase (ERK) is a central driver of these
behaviors. ERK promotes differentiation in cultured stem cells, but how it is activated after injury is poorly
understood. Together, these findings establish our central hypothesis, which is that injury synchronizes
the cell cycle, enabling local cues to channel stem cell differentiation toward discrete cell fates. In Aim 1,
we will determine how injury induces cell cycle arrest in stemcells after radiation. We will examine DNA
repair and test the function of conserved genes that are upregulatedafter injury. In Aim 2, we will dissect
the mechanisms driving organ-specific regeneration by purification and single-cell sequencing of stem
cells proliferating after organ loss. We will identify receptors enriched on these cells, and test their function
in organ regeneration to determine if they act upstream of FoxA. In Aim 3, we will identify the upstream
receptors that activate MAP kinase signaling in stem cells with combinations of RNAi, pharmacology and
biochemistry. This proposal exploits our ability to challenge stem cells with precise insults, providing a
lens into the mechanisms that enable flexible stem cell responses during injury and homeostasis.
Understanding the molecular mechanisms that govern stem cell behavior in a physiologically-relevant
context will inform the design of future strategies for regenerative medicine technologies.
摘要
组织的成功再生需要干细胞可塑性、增殖和分化的瞬时增加。
分化,以便产生与先前存在的组织和器官整合的新细胞。途径
控制这些关键行为的机制已经确定,但损伤信号如何触发干细胞
再生所必需的细胞增殖和分化仍然知之甚少。在大多数
模型生物,再生能力有限,干细胞稀缺,这使得很难
明确损伤后调节干细胞增殖和分化的机制。相比之下,
扁形虫Schmidteamidiomedioea有丰富的干细胞,这些干细胞被损伤和燃料激活
连续再生与胚胎干细胞一样,
into any type类型oftissue组织.这些多能干细胞可以容易地被鉴定、监测、纯化,并
彻底剖析了分子水平。我们最近有两个重要发现,
这一提议的基础。首先,任何类型的损伤似乎都能保护干细胞免受致命辐射的伤害,
因为它停止了细胞周期,较少的干细胞发生凋亡。第二,我们开创了一种化学物质
选择性切除咽部这一单一器官的方法。咽部再生需要上调
保守的Forkhead转录因子FoxA在一个离散的干细胞亚群中,
这种针对性的伤害。我们发现细胞外信号调节激酶(ERK)是这些信号转导的中心驱动因子。
行为。ERK在培养的干细胞中促进分化,但在损伤后如何激活还不清楚。
明白总之,这些发现确立了我们的中心假设,即损伤是由神经系统引起的。
细胞周期,使局部信号能够引导干细胞分化为离散的细胞命运。在目标1中,
我们将确定辐射后损伤如何诱导干细胞的细胞周期停滞。我们会检查DNA
修复和测试损伤后上调的保守基因的功能。在目标2中,我们将剖析
通过茎的纯化和单细胞测序驱动器官特异性再生的机制
器官丧失后细胞增殖我们将鉴定这些细胞上富集的受体,并测试它们的功能。
以确定它们是否作用于FoxA的上游。在目标3中,我们将确定上游
在干细胞中激活MAP激酶信号传导的受体与RNAi、药理学和
生物化学这项提议利用了我们用精确的侮辱来挑战干细胞的能力,
透镜的机制,使灵活的干细胞反应损伤和稳态。
了解在生理学相关的环境中控制干细胞行为的分子机制
背景将为再生医学技术未来战略的设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Elizabeth Adler其他文献
Carolyn Elizabeth Adler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Elizabeth Adler', 18)}}的其他基金
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10687835 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10264039 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10474437 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10387688 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10810170 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10099086 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7612047 - 财政年份:2008
- 资助金额:
$ 20.15万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7485945 - 财政年份:2008
- 资助金额:
$ 20.15万 - 项目类别:
相似国自然基金
Epac1/2通过蛋白酶体调控中性粒细胞NETosis和Apoptosis在急性肺损伤中的作用研究
- 批准号:LBY21H010001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Apoptosis/Ferroptosis双重激活效应的天然产物AlbiziabiosideA的抗肿瘤作用机制研究及其结构改造
- 批准号:81703335
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双肝移植后Apoptosis和pyroptosis在移植物萎缩差异中的作用和供受者免疫微环境变化研究
- 批准号:81670594
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Serp-2 调控apoptosis和pyroptosis 对肝脏缺血再灌注损伤的保护作用研究
- 批准号:81470791
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
- 批准号:81101529
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
放疗与细胞程序性死亡(APOPTOSIS)相关性及其应用研究
- 批准号:39500043
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual