Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
基本信息
- 批准号:10264039
- 负责人:
- 金额:$ 37.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AmputationAnimal ModelAnimalsApoptosisAutomobile DrivingBehaviorBiochemistryBiological AssayCell CycleCell Cycle ArrestCell Differentiation processCell divisionCellsChemicalsCuesDNADNA RepairEpidermal Growth Factor ReceptorExtracellular Signal Regulated KinasesFibroblast Growth Factor ReceptorsFoundationsFutureG2/M Checkpoint PathwayGenesGoalsHomeostasisInjuryKineticsLigandsMethodsMicrotubule DepolymerizationMitogen-Activated Protein KinasesMolecularMonitorMyocardial InfarctionNatural regenerationNocodazoleOrganPathway interactionsPharmacologyPharyngeal structurePhosphorylationPhysiologicalPlanariansPlatyhelminthsPluripotent Stem CellsProliferatingRNA InterferenceRNA interference screenRadiationRadiation InjuriesRegenerative MedicineRegenerative capacityRegulator GenesSignal PathwaySignal TransductionStrokeSurgical InjuriesTechnologyTestingTissuesTranscriptTranscriptional ActivationUp-Regulationcell behaviordesignembryonic stem cellflexibilityforkhead proteinimprovedinjuredknock-downlensorgan regenerationprogenitorreceptorregenerative approachresponseresponse to injurysingle cell sequencingsingle-cell RNA sequencingstem cell differentiationstem cell populationstem cell proliferationstem cellstissue regenerationtranscriptometranscriptome sequencing
项目摘要
Abstract
Successful regeneration of tissues requires transient increases in stem cell plasticity, proliferation, and
differentiation, in order to produce new cells that integrate with preexisting tissues and organs. Pathways
governing these critical behaviors have been identified, but how injury signals can trigger stem cell proliferation
and differentiation of cells necessary for regeneration remains poorly understood. In most model organisms,
regenerative capacity is limited and stem cells are scarce, which has made it difficult to pinpoint the
mechanisms regulating stem cell proliferation and differentiation after injury. By contrast, the planarian
flatworm Schmidtea mediterranea has abundant stem cells that are activated by injury and fuel continuous
regeneration. Like embryonic stem cells, planarian stem cells have the capacity to differentiate into any type of
tissue. These pluripotent stem cells can be readily identified, monitored, purified, and thoroughly profiled at the
molecular level. We recently made two important discoveries that form the foundation of this proposal. First,
injury of any type appears to protect stem cells from lethal radiation, because it halts the cell cycle and fewer
stem cells undergo apoptosis. Second, we pioneered a chemical method to selectively remove a single organ,
the pharynx. Pharynx regeneration requires the upregulation of the conserved Forkhead transcription factor
FoxA in a discrete subset of stem cells immediately after this targeted injury. We find that the extracellular
signal-regulated kinase (ERK) is a central driver of these behaviors. ERK promotes differentiation in cultured
stem cells, but how it is activated after injury is poorly understood. Together, these findings establish our
central hypothesis, which is that injury synchronizes the cell cycle, enabling local cues to channel stem cell
differentiation toward discrete cell fates. In Aim 1, we will determine how injury induces cell cycle arrest in stem
cells after radiation. We will examine DNA repair and test the function of conserved genes that are upregulated
after injury. In Aim 2, we will dissect the mechanisms driving organ-specific regeneration by purification and
single-cell sequencing of stem cells proliferating after organ loss. We will identify receptors enriched on these
cells, and test their function in organ regeneration to determine if they act upstream of FoxA. In Aim 3, we will
identify the upstream receptors that activate MAP kinase signaling in stem cells with combinations of RNAi,
pharmacology and biochemistry. This proposal exploits our ability to challenge stem cells with precise insults,
providing a lens into the mechanisms that enable flexible stem cell responses during injury and homeostasis.
Understanding the molecular mechanisms that govern stem cell behavior in a physiologically-relevant context
will inform the design of future strategies for regenerative medicine technologies.
摘要
组织的成功再生需要干细胞可塑性、增殖和分化的瞬时增加。
分化,以便产生与先前存在的组织和器官整合的新细胞。途径
控制这些关键行为的机制已经确定,但损伤信号如何触发干细胞增殖
并且对于再生所必需的细胞的分化仍然知之甚少。在大多数模式生物中,
再生能力有限,干细胞稀缺,这使得很难确定
损伤后调节干细胞增殖和分化的机制。相比之下,
扁虫Schmidtea mediterranea具有丰富的干细胞,这些干细胞被损伤激活并持续提供燃料。
再生与胚胎干细胞一样,真涡虫干细胞具有分化成任何类型的细胞的能力。
组织.这些多能干细胞可以容易地鉴定、监测、纯化,并在体外进行彻底的分析。
分子水平。我们最近有两个重要的发现,构成了这个提议的基础。第一、
任何类型的损伤似乎都能保护干细胞免受致命辐射的伤害,因为它会停止细胞周期,
干细胞经历凋亡。其次,我们开创了一种化学方法,选择性地切除一个器官,
咽部咽再生需要上调保守的Forkhead转录因子
在这种靶向损伤后立即在干细胞的离散亚群中表达FoxA。我们发现细胞外
信号调节激酶(ERK)是这些行为的中心驱动力。ERK促进细胞分化
干细胞,但它是如何激活损伤后知之甚少。总之,这些发现确立了我们的
中心假设,即损伤扰乱细胞周期,使局部线索能够引导干细胞
向离散细胞命运分化。在目标1中,我们将确定损伤如何诱导干细胞中的细胞周期阻滞,
辐射后的细胞我们将研究DNA修复和测试保守基因的功能,
伤后在目标2中,我们将剖析通过纯化驱动器官特异性再生的机制,
器官丧失后干细胞增殖的单细胞测序。我们将鉴定出这些受体
细胞,并测试它们在器官再生中的功能,以确定它们是否作用于FoxA的上游。在目标3中,我们
用RNAi的组合鉴定在干细胞中激活MAP激酶信号传导的上游受体,
药理学和生物化学。这项提议利用了我们用精确的损伤来挑战干细胞的能力,
提供了一个透镜进入机制,使灵活的干细胞反应在损伤和稳态。
了解在生理相关背景下支配干细胞行为的分子机制
将为再生医学技术的未来战略设计提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carolyn Elizabeth Adler其他文献
Carolyn Elizabeth Adler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carolyn Elizabeth Adler', 18)}}的其他基金
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10687835 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10474437 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10580319 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10387688 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10810170 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms driving stem cell responses to injury in planarians
涡虫干细胞对损伤反应的驱动机制
- 批准号:
10099086 - 财政年份:2020
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7612047 - 财政年份:2008
- 资助金额:
$ 37.17万 - 项目类别:
Mechanisms of Organ Regeneration in the planarian Schmidtea mediterranea
涡虫 Schmidtea mediterranea 的器官再生机制
- 批准号:
7485945 - 财政年份:2008
- 资助金额:
$ 37.17万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists