SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
基本信息
- 批准号:10689198
- 负责人:
- 金额:$ 28.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAwarenessCancer ModelCancer PatientCancer SurvivorCategoriesCause of DeathCessation of lifeCollaborationsColorectal CancerCreativenessDataData ScienceDevelopmentElectronic Health RecordHealthcareHumanInstructionKnowledgeMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of prostateMethodsMissionModelingMorbidity - disease rateOutcomePatientsPhysiciansPopulationPopulation StudyProblem SolvingPublic HealthRecurrenceResearchResearch PersonnelRiskSensitivity and SpecificityTechnologyUnited States National Institutes of HealthValidationcancer caredeep learninghigh schoolimprovedinterdisciplinary collaborationlearning networkmachine learning algorithmmachine learning classificationmachine learning modelmalignant breast neoplasmmortalityneural networknovelprognosticationprogramsscreeningtoolundergraduate student
项目摘要
Due to the high stakes of healthcare, the primary barrier is the extremely low tolerance of errors in
healthcare practice, which requires extremely high sensitivity and specificity of any modelling. However,
nearly all Machine learning (ML) models focus on improving the accuracy. It cannot yet reach both
extremely high sensitivity and specificity using healthcare data. Separate screening and confirmatory ML
tools are proposed to achieve very high sensitivity and specificity. Moreover, many ML algorithms suffer
from the lack of clear explanations, such as deep learning and neural networks, and would unlikely meet
the FAIR criteria. Cancer is the second leading cause of death in the U.S. The number of cancer survivors
continues to grow; unfortunately, so does the number of non-cancer deaths in cancer patients. However,
nearly all `omic and large population studies focused on binary outcomes (cancer death or recurrence).
Therefore, there is an urgent need to better understand and reduce non-cancer deaths in cancer patients,
using `omic and population data. To address these problems, the project will develop screening and
confirmatory ML to model cancer and noncancer deaths in breast, colorectal, prostate and lung cancer
patients using `omic data and electronic health records (EHR). The proposed research will result in
fundamental contribution to ML tools, workflows and methods to make novel use of `omic and EHR data
for cancer care. It timely meets the urgent needs in precise reduction of non-cancer deaths. This project
also uniquely addresses the Transformative Data Science research theme. The interdisciplinary
collaboration in this project as outlined in the Collaboration Plan will offer a diverse basis for creative
problem solving and validation. The proposal has 3 broader impacts: 1) The developed novel ML
algorithms and technology will enable physicians to more precisely prognosticate and treat cancer
patients based on their risk of multicategory deaths. 2) The research program will support and nurture
undergraduate and graduate researchers. 3) The proposed research program will support high school and
undergraduate students both in the conduct of research and in awareness of ML usefulness.
RELEVANCE (See instructions):
The proposed research is relevant to public health because the development and better utilization novel
machine learning for classifying non-cancer deaths in cancer patients is expected to reduce the morbidity
and mortality in these patients. Thus, the proposed research is relevant to the part of the NIH's mission
that pertains to developing fundamental knowledge that will help to lengthen human lives and reduce the
burdens of human illness.
由于医疗保健的高风险,主要障碍是对错误的极低容忍度
医疗实践,这对任何模型都要求极高的灵敏度和特异度。然而,
几乎所有的机器学习(ML)模型都着眼于提高精度。它还不能同时到达两个地方
使用医疗保健数据具有极高的灵敏度和特异度。单独筛查和确诊ML
为了达到非常高的灵敏度和特异度,提出了一些工具。此外,许多最大似然算法都会受到影响
由于缺乏明确的解释,如深度学习和神经网络,不太可能满足
公平的标准。癌症是美国第二大死因。癌症幸存者的数量
继续增长;不幸的是,癌症患者的非癌症死亡人数也在增加。然而,
几乎所有的经济学和大人口研究都侧重于两种结果(癌症死亡或复发)。
因此,迫切需要更好地了解和减少癌症患者的非癌症死亡,
使用“体量和人口数据”。为了解决这些问题,该项目将开发筛选和
验证性ML用于模拟乳腺癌、结直肠癌、前列腺癌和肺癌的癌症和非癌症死亡
使用电子数据和电子健康记录(EHR)的患者。拟议的研究将导致
对ML工具、工作流程和方法的基本贡献,以创新地使用OMIC和EHR数据
用于癌症护理。它及时满足了精准减少非癌症死亡的迫切需求。这个项目
还独特地解决了变革性数据科学研究主题。跨学科
协作计划中概述的在此项目中的协作将为创新提供多样化的基础
问题的解决和验证。该提议有三个更广泛的影响:1)开发的小说ML
算法和技术将使医生能够更准确地预测和治疗癌症
患者基于他们的多类别死亡风险。2)研究计划将支持和培育
本科生和研究生研究人员。3)拟议的研究计划将支持高中和
本科生在进行研究的同时也意识到ML的有用性。
相关性(请参阅说明):
建议的研究与公共卫生相关,因为开发和更好的利用是新颖的
机器学习用于癌症患者非癌症死亡的分类有望降低发病率
以及这些患者的死亡率。因此,拟议的研究与美国国立卫生研究院的任务部分相关
这与发展基础知识有关,这将有助于延长人类寿命并减少
人类疾病的负担。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges and Opportunities Associated with Lifting the Zero COVID-19 Policy in China.
- DOI:10.14218/erhm.2023.00002
- 发表时间:2024-01-01
- 期刊:
- 影响因子:0
- 作者:Hu, Kun;Zhang, Lanjing
- 通讯作者:Zhang, Lanjing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lanjing Zhang其他文献
Lanjing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lanjing Zhang', 18)}}的其他基金
SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
- 批准号:
10596376 - 财政年份:2022
- 资助金额:
$ 28.08万 - 项目类别:
相似海外基金
Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
- 批准号:
24K13361 - 财政年份:2024
- 资助金额:
$ 28.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 28.08万 - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Examining how faculty awareness of systemic barriers and growth mindset influences students' belonging, self-efficacy, and success in STEM
博士后奖学金:STEMEdIPRF:研究教师对系统性障碍和成长心态的认识如何影响学生的归属感、自我效能和 STEM 成功
- 批准号:
2327319 - 财政年份:2024
- 资助金额:
$ 28.08万 - 项目类别:
Standard Grant
I-Corps: Virtual Reality Training Platform for Increasing Awareness of Unconscious Bias in Industry Decision-Making
I-Corps:虚拟现实培训平台,用于提高行业决策中无意识偏见的意识
- 批准号:
2402141 - 财政年份:2024
- 资助金额:
$ 28.08万 - 项目类别:
Standard Grant
CAREER: Digital Twins of Surgical Environments for Situational Awareness and Immersive Simulation
职业:用于态势感知和沉浸式模拟的手术环境数字孪生
- 批准号:
2239077 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Continuing Grant
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
- 批准号:
23H01019 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
STTR Phase I: Space Debris Awareness Spectrum
STTR 第一阶段:空间碎片意识频谱
- 批准号:
2227213 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Standard Grant
A smartphone rip-detection tool to improve rip current awareness
智能手机撕裂检测工具,可提高撕裂电流感知能力
- 批准号:
LP220200780 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Linkage Projects
The 'Long COVID Education and Awareness Hub': A digitally integrated resource for patients, caregivers, and health care providers
“长期新冠病毒教育和意识中心”:为患者、护理人员和医疗保健提供者提供的数字集成资源
- 批准号:
495218 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Evidence-Based Dialogue to Promote Sun Protection, Foster a Community of Concern and Increase Awareness for Skin Cancers in Canada.
在加拿大开展基于证据的对话,以促进防晒、培养关注社区并提高对皮肤癌的认识。
- 批准号:
485622 - 财政年份:2023
- 资助金额:
$ 28.08万 - 项目类别:
Miscellaneous Programs