SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients

SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型

基本信息

  • 批准号:
    10596376
  • 负责人:
  • 金额:
    $ 28.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Due to the high stakes of healthcare, the primary barrier is the extremely low tolerance of errors in healthcare practice, which requires extremely high sensitivity and specificity of any modelling. However, nearly all Machine learning (ML) models focus on improving the accuracy. It cannot yet reach both extremely high sensitivity and specificity using healthcare data. Separate screening and confirmatory ML tools are proposed to achieve very high sensitivity and specificity. Moreover, many ML algorithms suffer from the lack of clear explanations, such as deep learning and neural networks, and would unlikely meet the FAIR criteria. Cancer is the second leading cause of death in the U.S. The number of cancer survivors continues to grow; unfortunately, so does the number of non-cancer deaths in cancer patients. However, nearly all `omic and large population studies focused on binary outcomes (cancer death or recurrence). Therefore, there is an urgent need to better understand and reduce non-cancer deaths in cancer patients, using `omic and population data. To address these problems, the project will develop screening and confirmatory ML to model cancer and noncancer deaths in breast, colorectal, prostate and lung cancer patients using `omic data and electronic health records (EHR). The proposed research will result in fundamental contribution to ML tools, workflows and methods to make novel use of `omic and EHR data for cancer care. It timely meets the urgent needs in precise reduction of non-cancer deaths. This project also uniquely addresses the Transformative Data Science research theme. The interdisciplinary collaboration in this project as outlined in the Collaboration Plan will offer a diverse basis for creative problem solving and validation. The proposal has 3 broader impacts: 1) The developed novel ML algorithms and technology will enable physicians to more precisely prognosticate and treat cancer patients based on their risk of multicategory deaths. 2) The research program will support and nurture undergraduate and graduate researchers. 3) The proposed research program will support high school and undergraduate students both in the conduct of research and in awareness of ML usefulness. RELEVANCE (See instructions): The proposed research is relevant to public health because the development and better utilization novel machine learning for classifying non-cancer deaths in cancer patients is expected to reduce the morbidity and mortality in these patients. Thus, the proposed research is relevant to the part of the NIH's mission that pertains to developing fundamental knowledge that will help to lengthen human lives and reduce the burdens of human illness.
由于医疗保健的风险很高,主要障碍是对错误的容忍度极低 医疗保健实践,这要求任何建模都具有极高的敏感性和特异性。然而, 几乎所有机器学习 (ML) 模型都专注于提高准确性。目前尚无法同时达到这两个目标 使用医疗保健数据具有极高的敏感性和特异性。单独的筛选和验证性机器学习 建议使用工具来实现非常高的灵敏度和特异性。此外,许多机器学习算法都受到影响 由于缺乏明确的解释,例如深度学习和神经网络,并且不太可能满足 公平标准。癌症是美国第二大死因 癌症幸存者人数 持续增长;不幸的是,癌症患者的非癌症死亡人数也在增加。然而, 几乎所有的组学和大群体研究都集中于二元结果(癌症死亡或复发)。 因此,迫切需要更好地了解和减少癌症患者的非癌症死亡, 使用“组学和人口数据”。为了解决这些问题,该项目将开展筛选和 验证性机器学习可模拟乳腺癌、结直肠癌、前列腺癌和肺癌的癌症和非癌症死亡 使用“组学数据”和电子健康记录(EHR)的患者。拟议的研究将导致 对机器学习工具、工作流程和方法做出了根本性贡献,以新颖地利用“组学”和 EHR 数据 用于癌症护理。及时满足了精准减少非癌症死亡的迫切需求。这个项目 还独特地解决了变革性数据科学研究主题。跨学科 合作计划中概述的该项目的合作将为创意提供多样化的基础 问题解决和验证。该提案具有 3 个更广泛的影响:1)开发的新颖的 ML 算法和技术将使医生能够更准确地预测和治疗癌症 根据患者多类别死亡的风险。 2)该研究计划将支持和培育 本科生和研究生研究人员。 3) 拟议的研究计划将支持高中和 本科生在进行研究和了解 ML 的实用性方面。 相关性(参见说明): 拟议的研究与公共卫生相关,因为新颖的开发和更好的利用 用于对癌症患者的非癌症死亡进行分类的机器学习有望降低发病率 和这些患者的死亡率。因此,拟议的研究与 NIH 的部分使命相关 这涉及发展有助于延长人类寿命和减少死亡的基础知识 人类疾病的负担。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lanjing Zhang其他文献

Lanjing Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lanjing Zhang', 18)}}的其他基金

SCH: Screening and confirmatory machine learning for explainable modeling of non-cancer deaths in cancer patients
SCH:筛选和验证机器学习,用于癌症患者非癌症死亡的可解释模型
  • 批准号:
    10689198
  • 财政年份:
    2022
  • 资助金额:
    $ 28.83万
  • 项目类别:

相似海外基金

Cultivating Diversity Awareness in Japanese Med Schools with a foreign Standardized Patient program
通过外国标准化患者计划培养日本医学院的多样性意识
  • 批准号:
    24K13361
  • 财政年份:
    2024
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Examining how faculty awareness of systemic barriers and growth mindset influences students' belonging, self-efficacy, and success in STEM
博士后奖学金:STEMEdIPRF:研究教师对系统性障碍和成长心态的认识如何影响学生的归属感、自我效能和 STEM 成功
  • 批准号:
    2327319
  • 财政年份:
    2024
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Standard Grant
I-Corps: Virtual Reality Training Platform for Increasing Awareness of Unconscious Bias in Industry Decision-Making
I-Corps:虚拟现实培训平台,用于提高行业决策中无意识偏见的意识
  • 批准号:
    2402141
  • 财政年份:
    2024
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Standard Grant
DroneOps VR - Virtual Reality Training for Drone Hazard Awareness and Flight Planning
DroneOps VR - 无人机危险意识和飞行计划的虚拟现实培训
  • 批准号:
    10061885
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Collaborative R&D
Evidence-Based Dialogue to Promote Sun Protection, Foster a Community of Concern and Increase Awareness for Skin Cancers in Canada.
在加拿大开展基于证据的对话,以促进防晒、培养关注社区并提高对皮肤癌的认识。
  • 批准号:
    485622
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Miscellaneous Programs
The 'Long COVID Education and Awareness Hub': A digitally integrated resource for patients, caregivers, and health care providers
“长期新冠病毒教育和意识中心”:为患者、护理人员和医疗保健提供者提供的数字集成资源
  • 批准号:
    495218
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
A smartphone rip-detection tool to improve rip current awareness
智能手机撕裂检测工具,可提高撕裂电流感知能力
  • 批准号:
    LP220200780
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Linkage Projects
Development of Informatics Materials with an Awareness of the High School-University connection and a Learning Support Environment for Data-Driven Instruction
开发具有高中与大学联系意识的信息学材料和数据驱动教学的学习支持环境
  • 批准号:
    23H01019
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mindfulness according to the rNying ma School of Tibetan Buddhism: Philological Research on Its Scriptures, Exegesis, and Philosophy of Self-Awareness
藏传佛教宁玛派的正念:其经典、训诂和自我意识哲学的文字学研究
  • 批准号:
    23K00048
  • 财政年份:
    2023
  • 资助金额:
    $ 28.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了