Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
基本信息
- 批准号:10689674
- 负责人:
- 金额:$ 4.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgricultureAlgaeAlgal BloomsAsthmaBacteriaBiological AssayBiological MarkersCategoriesCessation of lifeChemistryCircadian RhythmsClassificationClimateCommunitiesDataData SetDermatitisDetectionDevelopmentDisastersEcosystemEventEvolutionExhibitsExperimental DesignsExposure toFamilyFishesFoundationsFutureGoalsGovernmentGroupingHealthHealth Care CostsHourHumanIndividualIndustryInvestigationIronLeadLinkMass Spectrum AnalysisMetabolicMetalsMethodsMissionModelingMolecularNational Institute of Environmental Health SciencesNervous System TraumaPatternPeptidesPeriodicityPersonal SatisfactionPhytoplanktonPoisonProtein DynamicsProteinsPublic HealthRecording of previous eventsRecreationResearchResolutionRiskSafetySamplingScienceScientistSeasonsSiteSumTaxonomyTestingTimeToxic effectToxicity TestsToxinWashingtonWaterWorkbiomarker developmentbiomarker identificationcandidate markercircadiancontaminated drinking watercontaminated waterexposed human populationfunctional groupharmful algal bloomsimprovedinnovationinsightinstrumentationmetagenomemetaproteomicsmicrobial communitymicrobiomemicrobiome analysismicroorganismpotential biomarkerpredictive markerpredictive testpreventprogramsprotein expressionresponsesoundsuccesstoolundergraduate studentwater qualitywater samplingwater treatment
项目摘要
Project Abstract
Harmful algal blooms (HABs) are a reoccurring toxic event threatening public health through the contamination
of water quality worldwide. Various toxic phytoplankton species regularly undergo bloom events in both coastal
and inland water bodies, wreaking havoc for water treatment facilities, fishing, and recreational industries,
amassing ~$11 billion annually in healthcare costs related to human exposure. As changes in climate and
agriculture continue to alter water chemistry, bloom events have been observed to occur more frequently, last
longer, and release a wider range of toxic chemicals. Currently, there exists no method for predicting bloom
onset, leaving the public vulnerable to a spectrum of potentially avoidable harmful toxins.
A long history of shared ecosystems and co-occurring evolution has established a close relationship between
HAB-forming phytoplankton and their microbiome. Bacteria have been shown to respond to the photosynthetic
circadian rhythm of the algae, mimicking circadian patterns in the expression of metabolically necessary proteins.
A significant change in the ecosystem is likely to cause reactionary changes in patterns of protein expression,
detectable as either individual peptides or peptide-groups sharing similar taxonomic origin or functional category.
If the established circadian rhythmicity of a peptide or group of peptides is lost >24 hours prior to HAB initiation,
it could be used as an indicator to predict impending bloom toxicity. I hypothesize that tracking the quantified
expressed peptides of the HAB-associated microbiome will allow me to detect rhythmicity and the loss of
rhythmicity of those peptides; these peptides, or groups of peptides, can serve as biomarkers to be
developed as bioassays or probes for forecasting HABs to better warn the public.
For this project, I will be collecting time-dependent water samples of the microbiome surrounding the known
HAB-forming phytoplankton Pseudo-nitzschia biannually in Puget Sound, WA. My experimental design includes
working with Washington’s Sound Toxins Program to conduct high-resolution sampling of the phytoplankton
microbiome every 4 hours beginning 2 weeks prior to a predicted bloom event and sampling until HAB-toxins
peak. I will then analyze the microbiome samples using quantitative data-independent acquisition mass
spectrometry methods to establish time-dependent peptide abundances. These peptides will be grouped and
annotated into all potential taxonomic and functional groups using MetaGOmics and time-course data will be
analyzed using Rhythmicity Analysis Incorporating Non-parametric methods. This will allow me to detect
rhythmicity from individual peptides (AIM 1) and peptides grouped by taxa or function (AIM 2) prior to the bloom
event. Peptides or peptide groups exhibiting significant changes in or loss of rhythmicity prior to bloom onset
represent potential biomarkers for the future development of a rapid molecular peptide-based assay or probe for
predicting HAB events. This project uses advances in metaproteomic methods to prevent harmful human
exposure to HAB toxins by predicting bloom onset using microbiome biomarker peptide groups.
项目摘要
有害的藻类血液(HAB)是通过污染威胁公共卫生的有毒事件
全球水质的水质。各种有毒的浮游植物物种定期在这两个沿海地区发生开花事件
和内陆水体,造成水处理设施的破坏,钓鱼和休闲行业,
与人类暴露有关的医疗费用每年收集约110亿美元。随着气候变化和
农业继续改变水化学,已经观察到开花事件发生更频繁,最后
更长,并释放更广泛的有毒化学物质。目前,没有预测盛开的方法
发作,让公众容易受到一系列可能避免的有害毒素的影响。
共享生态系统和共同发生的发展的悠久历史已经建立了密切的关系
HAB形成的浮游植物及其微生物组。细菌已被证明可以对光合作用反应
藻类的昼夜节律,模仿了代谢必要蛋白的表达中的昼夜节律。
生态系统的重大变化可能会导致蛋白质表达模式的反动变化,
可检测为单个Petides或Pepper-groups共享类似的分类学起源或功能类别。
如果在HAB开始前24小时丢失肽或一组肽的既定昼夜节律,否则
它可以用作预测即将来临的开花毒性的指标。我假设跟踪量化的
与HAB相关的微生物组的表达肽将允许我检测节奏和丧失
那些胡椒的节奏性;这些辣椒或辣椒群可以用作生物标志物
作为生物测定或预测HAB的问题开发,以更好地警告公众。
对于这个项目,我将收集围绕已知的微生物组的时间相关水样
hab形成的浮游植物伪nitzschia bian bianly in Puget Sound,华盛顿州。我的实验设计包括
与华盛顿的声音毒素计划合作进行浮游植物的高分辨率抽样
在预测的盛开事件之前2周开始每4小时的微生物组,并进行采样直至Hab-toxins
顶峰。然后,我将使用定量数据独立的采集质量分析微生物组样品
建立时间依赖性肽丰度的光谱法。这些宠物将分组
使用元高统和时间表数据注释到所有潜在的分类学和官能团中
使用纳入非参数方法的节奏分析分析。这将使我发现
来自单个胡椒的节奏性(AIM 1)和由分类单元或功能分组(AIM 2)在开花之前
事件。肽或胡椒组在开放前表现出明显变化或丧失节奏性的变化或丧失
代表潜在的生物标志物,用于未来开发基于分子肽的快速测定或探针
预测HAB事件。该项目使用元蛋白质组学方法的进步来预防有害人类
通过使用微生物组生物标志物辣椒组预测开花发作,暴露于HAB毒素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miranda Mudge其他文献
Miranda Mudge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miranda Mudge', 18)}}的其他基金
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10459284 - 财政年份:2021
- 资助金额:
$ 4.24万 - 项目类别:
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10312280 - 财政年份:2021
- 资助金额:
$ 4.24万 - 项目类别:
相似国自然基金
富营养湖泊水体表面藻斑水平漂移与藻类水华暴发的动力驱动机制
- 批准号:32371648
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于藻华暴发过程影响的湖泊中砷迁移转化及驱动机制
- 批准号:41907335
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
流量坦化河段着生藻“水华”水流调控因子研究
- 批准号:51879279
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于射流泵式空化发生器的水华藻类的灭杀机理研究
- 批准号:51679169
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
海洋微生物功能菌群、藻类与营养盐生态耦合动力学机制研究
- 批准号:31470536
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10459284 - 财政年份:2021
- 资助金额:
$ 4.24万 - 项目类别:
Modeling Microbiome Peptides Using Metaproteomics for the Prediction of Harmful Algal Blooms
使用宏蛋白质组学对微生物组肽进行建模以预测有害藻华
- 批准号:
10312280 - 财政年份:2021
- 资助金额:
$ 4.24万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
9976540 - 财政年份:2018
- 资助金额:
$ 4.24万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
10427315 - 财政年份:2018
- 资助金额:
$ 4.24万 - 项目类别:
The synergistic effects of climate and anthropogenic drivers on toxic cyanobacterial blooms
气候和人为驱动因素对有毒蓝藻水华的协同影响
- 批准号:
9789304 - 财政年份:
- 资助金额:
$ 4.24万 - 项目类别: