Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
基本信息
- 批准号:10704524
- 负责人:
- 金额:$ 33.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectBacterial InfectionsBehaviorBiochemicalBiologicalBiological ProcessCarcinomaCellsChromatinComplexComputer ModelsComputing MethodologiesDataDiffusionDiseaseEnzymesEscherichia coliExperimental DesignsFluorescence MicroscopyGene Expression RegulationGenesGenetic DiseasesGenetic TranscriptionGoalsHealthHumanImageInfectionKnowledgeLabelMAP Kinase GeneMalignant NeoplasmsMeasurementMeasuresMessenger RNAModelingMolecularMolecular MachinesMorphologic artifactsNatureOperonOrganismPhosphorylationPolymerasePopulationProcessRNAReactionRepressionReproducibilityResearchResourcesRetinal DegenerationSAGASignal TransductionStatistical MethodsStressTestingTransfer RNATranslatingTranslationsUncertaintyVariantViralWorkYeastscancer therapycellular imagingcomputerized toolscomputing resourcescost effectivedata integrationdata modelingdesignepigenetic memoryexperimental analysisexperimental studyimage processingimprovedinhibitorinsightmarkov modelmicroscopic imagingnovelosteosarcomaparticlepredictive modelingpreventsimulationsingle moleculeskeletal dysplasiaspatiotemporaltooltranscription factortranslation factor
项目摘要
Project Summary
Single-cell imaging can quantify intricate spatial and temporal dynamics of gene regulation that underly
important biomedical process ranging from bacterial infections to cancer. This gene regulation is subject to
complexities and randomness of biological processes, and its observation is further subject to measurement
artifacts due to inefficiencies in biochemical labels and distortions in microscope imaging. Yet, despite these
complications, preliminary work shows that it is possible to integrate data and computational models to predict
gene regulation in myriad environmental and genetic conditions provided that: (1) models must be constrained
by informative and reproducible data, (2) models must be rigorously verified to account for biological and
technical variations, and (3) models must be systematically explored to quantify uncertainties. The overarching
hypothesis of this project is that spatial and temporal fluctuations observed in subcellular dynamics contain
unique information that can be unlocked with improved computational methods and model-guided experiments.
To test this hypothesis, this project will create a new research platform to be known as the single-cell Graphical
Utility to Interpret and Design Experiments. scGUIDE will combine experimental analysis (e.g., image processing
and single-particle tracking to extract quantitative data from fluorescence microscopy experiments), spatial
stochastic simulation (e.g., reaction-diffusion models to generate realistic videos to mimic cellular experiments),
model abstraction and identification (e.g., parameter inference and uncertainty quantification to translate
quantitative observations into predictive insight), and experiment design (e.g., statistical methods to pinpoint
which specific experimental conditions are most likely to reveal new biological insight).
To demonstrate its broad capabilities, scGUIDE will be used to analyze and design single-cell
experiments for four different health-related processes. In yeast, the project will examine the coordination
between stress-activated MAPK dynamics and Spt-Ada-Gcn5 Acetyltransferase (SAGA) subunits that control
chromatin and RNA transcription/transport dynamics, and which have been implicated in carcinoma, skeletal
dysplasia, and retinal degeneration. In human cells, the project will examine the spatiotemporal clustering and
phosphorylation of RNAP Polymerase II as it engages in single-gene transcription under CDK-inhibitor cancer
treatments. In osteosarcoma cells, the project will explore how competition for local tRNA resources affects
translation of single-mRNA molecules in different sub-cellular regions and in human and viral contexts. Finally,
the project will explore the effects that epigenetic memory and molecular competition have on the multi-
generational activation or repression of the pap operon that allows E. coli to establish uropathogenic infections.
Each project will build mechanistic and quantitatively predictive models for how spatial and temporal interactions
of transcription or translation factors, enzymes, and complex molecular machines combine with environmental
influences to regulate expression at the single-gene, single-mRNA, single-cell, and population levels.
项目摘要
单细胞成像可以量化基因调控的复杂时空动态,
重要的生物医学过程,从细菌感染到癌症。这种基因调控受到
生物过程的复杂性和随机性,其观察进一步受到测量
由于生物化学标记的低效和显微镜成像的失真而产生的伪影。然而,尽管这些
复杂性,初步工作表明,有可能整合数据和计算模型来预测
在无数的环境和遗传条件下的基因调控提供了:(1)模型必须受到限制
通过提供信息和可重复的数据,(2)模型必须严格验证,以说明生物和
技术上的变化,以及(3)必须系统地探讨模型,以量化不确定性。总体
该项目假设是,在亚细胞动力学中观察到的空间和时间波动包含
独特的信息,可以通过改进的计算方法和模型引导的实验来解锁。
为了验证这一假设,该项目将创建一个新的研究平台,称为单细胞图形
解释和设计实验的工具。scGUIDE将结合联合收割机实验分析(例如,图像处理
和单颗粒跟踪以从荧光显微镜实验中提取定量数据),空间
随机模拟(例如,反应-扩散模型以生成模拟细胞实验的真实视频),
模型抽象和识别(例如,参数推断和不确定性量化
将定量观察转化为预测洞察力),以及实验设计(例如,统计方法来查明
哪些特定的实验条件最有可能揭示新的生物学见解)。
为了展示其广泛的功能,scGUIDE将用于分析和设计单细胞
四个不同的健康相关过程的实验。在酵母,该项目将审查协调
应激激活的MAPK动力学和Spt-Ada-Gcn 5乙酰转移酶(佐贺)亚基之间的关系,
染色质和RNA转录/转运动力学,并已牵连到癌,骨骼肌,
发育不良和视网膜变性。在人类细胞中,该项目将研究时空聚类,
RNAP聚合酶II的磷酸化,因为它在CDK抑制剂癌症下参与单基因转录
治疗。在骨肉瘤细胞中,该项目将探索对局部tRNA资源的竞争如何影响
在不同的亚细胞区域和在人类和病毒环境中的单个mRNA分子的翻译。最后,
该项目将探索表观遗传记忆和分子竞争对多基因组的影响,
pap操纵子的世代激活或抑制,使E.大肠杆菌建立尿路感染。
每个项目将建立机制和定量预测模型,以了解空间和时间的相互作用
转录或翻译因子、酶和复杂的分子机器联合收割机与环境
影响调节单基因,单mRNA,单细胞和群体水平的表达。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualization and modeling of inhibition of IL-1β and TNF-α mRNA transcription at the single-cell level.
- DOI:10.1038/s41598-021-92846-0
- 发表时间:2021-07-01
- 期刊:
- 影响因子:4.6
- 作者:Kalb D;Vo HD;Adikari S;Hong-Geller E;Munsky B;Werner J
- 通讯作者:Werner J
Identification of gene regulation models from single-cell data.
从单细胞数据识别基因调控模型。
- DOI:10.1088/1478-3975/aabc31
- 发表时间:2018
- 期刊:
- 影响因子:2
- 作者:Weber,Lisa;Raymond,William;Munsky,Brian
- 通讯作者:Munsky,Brian
Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells.
- DOI:10.1038/s41594-020-0504-7
- 发表时间:2020-12
- 期刊:
- 影响因子:16.8
- 作者:Koch A;Aguilera L;Morisaki T;Munsky B;Stasevich TJ
- 通讯作者:Stasevich TJ
Using flow cytometry and multistage machine learning to discover label-free signatures of algal lipid accumulation.
使用流式细胞术和多级机器学习来发现藻类脂质积累的无标记特征。
- DOI:10.1088/1478-3975/ab2c60
- 发表时间:2019
- 期刊:
- 影响因子:2
- 作者:Tanhaemami,Mohammad;Alizadeh,Elaheh;Sanders,ClaireK;Marrone,BabettaL;Munsky,Brian
- 通讯作者:Munsky,Brian
Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene.
- DOI:10.1038/s41467-021-23417-0
- 发表时间:2021-05-26
- 期刊:
- 影响因子:16.6
- 作者:Forero-Quintero LS;Raymond W;Handa T;Saxton MN;Morisaki T;Kimura H;Bertrand E;Munsky B;Stasevich TJ
- 通讯作者:Stasevich TJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Munsky其他文献
Brian Munsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Munsky', 18)}}的其他基金
Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
- 批准号:
10406604 - 财政年份:2017
- 资助金额:
$ 33.44万 - 项目类别:
Using cellular fluctuations and computational analyses to probe biological mechanisms
利用细胞波动和计算分析来探索生物机制
- 批准号:
10240469 - 财政年份:2017
- 资助金额:
$ 33.44万 - 项目类别:
相似海外基金
New roles of IFN-inducible OAS proteins in innate immune defense against bacterial infections
IFN诱导的OAS蛋白在针对细菌感染的先天免疫防御中的新作用
- 批准号:
10649771 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Derivation and validation of a clinical prediction rule to identify febrile infants 61 to 90 days old at low and non-negligible risk of invasive bacterial infections
推导和验证临床预测规则,以识别 61 至 90 天大的发热婴儿,其侵袭性细菌感染的风险较低且不可忽略
- 批准号:
10574286 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
A gut feeling: How can gastrointestinal bacterial infections alter female reproductive tract immunity and control of sexually transmitted infections
直觉:胃肠道细菌感染如何改变女性生殖道免疫力和性传播感染的控制
- 批准号:
MR/X031993/1 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Research Grant
Molecular probes to diagnose pathoadapatations in bacterial infections
诊断细菌感染病理适应的分子探针
- 批准号:
EP/X014479/1 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Research Grant
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
SimCell vaccines against Staphylococcus aureus bacterial infections
针对金黄色葡萄球菌细菌感染的 SimCell 疫苗
- 批准号:
10073241 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Grant for R&D
I-Corps: Mitigating Multidrug Resistant Bacterial Infections with Biocompatible and Environmentally Benign Nanoantibiotics
I-Corps:利用生物相容性且对环境无害的纳米抗生素减轻多重耐药细菌感染
- 批准号:
2306943 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别:
Standard Grant
Multidimensional development of high-affinity anti-glycan antibodies to fight deadly bacterial infections
多维开发高亲和力抗聚糖抗体以对抗致命细菌感染
- 批准号:
10549640 - 财政年份:2023
- 资助金额:
$ 33.44万 - 项目类别: