Using cellular fluctuations and computational analyses to probe biological mechanisms

利用细胞波动和计算分析来探索生物机制

基本信息

  • 批准号:
    10240469
  • 负责人:
  • 金额:
    $ 32.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary New experimental approaches in single‐cell imaging and sequencing are producing an unprecedented amount of data to quantify the intricate dynamics of biomedical processes. These processes are subject to the intertwined issues of complexity and randomness, and it can be difficult for medical professionals to interpret, understand or act on this data. In particular, spatial, temporal and stochastic fluctuations in cellular processes introduce huge uncertainties that compromise responses, complicate modeling, and make predictive understanding seemingly impossible. We hypothesize that the fluctuations and heterogeneities of single‐cell dynamics can contain powerful information resources that can be unlocked with improved computational methods and integrated experiment designs. This project will create these tools and use them to study the dynamics of Mitogen–Activate Protein Kinase signaling and downstream regulation for multiple genes in multiple organisms. We will integrate state‐of‐the‐art single‐cell‐single‐molecule super‐resolution microscopy experiments with novel discrete stochastic analysis methods and seek to unlock the mysteries of (1) How do MAPK signals and transcription factors interact in space and time to differentially control expression of multiple genes in response to different external stresses and (2) How do mRNA sequences, protein regulators, and ribosomes interact to affect the natural and aberrant dynamics of translation activation, initiation, elongation and termination? We will also create a set of advanced computational tools and build them into a user‐friendly software package (the Stochastic System Identification Toolkit, SSIT), which will enable the systematic integration of discrete stochastic modeling approaches with single‐cell experiment techniques. We will build the SSIT to accomplish crucial tasks in the design, interpretation, prediction, and control of single‐cell experiments. To guarantee the broadest possible impact, the SSIT will be validated in direct collaboration with at least four of the nation’s top single‐cell experimental groups in bacteria, yeast, insect, and human research. Once validated, all SSIT tools will be made publically available, and the theory, algorithms and techniques will be taught to scores of graduate students, postdocs, and other young biomedical researchers at Colorado State University, Vanderbilt University, UC Berkeley, and Los Alamos National laboratory as well as at the NIGMS‐funded q‐bio Summer School, an internationally recognized program organized by the PI and held annually at the CSU. Our long‐term goal is to make systematic and rigorous computational modeling an accessible and standard practice for biological and biomedical research laboratories around the world. Successful completion of our goal will broadly support NIH mission areas to seek predictive knowledge about the nature and behavior of living systems; to enable more rapid and cost effective discoveries in health‐related fields; and to develop the human, physical and computational resources necessary to enhance the nation's economic well‐being and ability to prevent disease.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Munsky其他文献

Brian Munsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Munsky', 18)}}的其他基金

Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
  • 批准号:
    10406604
  • 财政年份:
    2017
  • 资助金额:
    $ 32.27万
  • 项目类别:
Integrating Multi-Scale Imaging, Reaction-Diffusion Simulation, and Markov Model Inference to Enhance Predictive Design and Interpretation of Single-Molecule Gene Regulation Experiments
集成多尺度成像、反应扩散模拟和马尔可夫模型推理,增强单分子基因调控实验的预测设计和解释
  • 批准号:
    10704524
  • 财政年份:
    2017
  • 资助金额:
    $ 32.27万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 32.27万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 32.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了