Circuit mechanisms underlying cortical communications

皮层通讯的电路机制

基本信息

  • 批准号:
    10703952
  • 负责人:
  • 金额:
    $ 133.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

To understand the principles of long-range connectivity in cortical communication, our efforts have focused on the following four projects during FY22. Functional connectivity of diverse long-range inputs to sensory cortex is aimed at achieving a mechanistic understanding of the functional connectivity of feedback / top-down projections to the primary sensory cortex. We have systematically examined the synaptic strength from different brain areas to diverse neuronal types in the primary somatosensory cortex (S1) and determined how the primary sensory cortex uses input-area-dependent, preferential recruitment of specific types of GABAergic interneurons to parse information from diverse feedback projections. Based on this framework, we investigate how cortical feedback projections to S1 are altered in a transgenic mouse line in which one of the neurodevelopmental (NDD) high risk genes is mutated in different types of GABAergic interneurons (INs). The goal of the second project, cortical development of inhibitory-to-inhibitory connections, is to address the developmental process of cortical inhibitory-to-inhibitory synaptic specificity during early development. Disinhibition mediated by vasoactive intestinal polypeptide (VIP)-positive GABAergic interneurons (INs) is a robust circuit motif found in all cortical areas. VIP INs inhibit other types of cortical GABAergic INs, but its inhibition of dendrite-targeting somatostatin (SST)-positive INs is particularly strong, leading to the disinhibition of pyramidal neurons. This cortical disinhibitory circuit motif has been shown to play an important role in sensorimotor integration, selective attention, gain control, and circuit plasticity. However, the mechanisms by which this robust circuit motif emerges throughout the cortex during early development is largely unknown. Ongoing work investigates which factors are critical for the stability and plasticity of strong inhibitory connections from VIP INs to SST INs during early development. The third project, the structural organization of cortical subnetworks, is aimed at understanding the principles that govern the functional heterogeneity of principal neurons in sensory cortex. Neuronal activity in the superficial layer of the primary sensory cortex is highly heterogenous in relation to various aspects of the animal's behavior. We asked whether functionally heterogeneous subnetworks are constrained by specific long-range and local presynaptic ensembles. This study provides the circuit-based mechanism for the organization of cortical subnetworks. Using single cell-initiated, monosynaptic rabies virus tracing combined with calcium imaging, we found that behavior state-encoding (spontaneous movement) neurons show characteristic long-range and local presynaptic networks. Our results reveal connectivity rules that support functional heterogeneity of cortical principal cells. In the fourth project, we investigate the role of higher-order thalamic nucleus in sensory perception. Somatosensation is an active process. Despite that action and sensation are tightly integrated contingent on the animals goal during active sensation, the neuronal substrates and circuits that mediate such interaction remain poorly understood. Anatomical studies suggest that whisker-dependent sensorimotor integration takes place in multiple closed loops in the brain. The posteromedial (POm) thalamic nucleus, the higher-order thalamic nucleus in the rodent somatosensory system, is an anatomical hub broadly connected with multiple sensory and motor brain areas, yet it weakly responds to passive sensory stimulation and whisker movements. To understand the role of POm in sensory perception, we developed a self-initiated, two-alternative forced-choice task in freely moving animals during active sensing. Using optogenetic and chemogenetic manipulation, we show that POm thalamic nucleus plays a significant role in sensory perception and the projection from the primary somatosensory cortex to POm is critical for the contribution of POm in sensory perception during active sensing. Ongoing work investigates dynamic neuronal activity of POm cells during active sensing.
为了了解皮层通信中的远程连接原理,我们在2022财年的工作重点是以下四个项目。 各种远程输入到感觉皮层的功能连接旨在实现对反馈/自上而下投射到初级感觉皮层的功能连接的机械理解。我们系统地研究了初级躯体感觉皮层(S1)中不同脑区与不同神经元类型的突触强度,并确定了初级感觉皮层如何使用输入区依赖性,优先招募特定类型的GABA能中间神经元来解析来自不同反馈投射的信息。基于这个框架,我们研究如何在转基因小鼠系中改变皮层反馈投射到S1,其中一个神经发育(NDD)高风险基因在不同类型的GABA能中间神经元(IN)中发生突变。 第二个项目的目标,皮层发育的神经元-抑制性连接,是要解决的发展过程中,皮层神经元-抑制性突触的特异性在早期发展。由血管活性肠多肽(VIP)阳性GABA能中间神经元(INs)介导的去抑制是在所有皮层区域发现的一个强大的回路基序。VIP INs抑制其他类型的皮质GABA能INs,但其对树突靶向生长抑素(SST)阳性INs的抑制特别强,导致锥体神经元的去抑制。这种皮层去抑制回路基序在感觉运动整合、选择性注意、增益控制和回路可塑性中发挥重要作用。然而,这种强大的电路基序在早期发育过程中出现在整个皮层的机制在很大程度上是未知的。正在进行的工作调查哪些因素是至关重要的稳定性和可塑性的强抑制性连接,从VIP IN的SST IN在早期发展。 第三个项目,皮层子网络的结构组织,旨在了解控制感觉皮层主要神经元功能异质性的原则。初级感觉皮层浅层的神经元活动与动物行为的各个方面有关,具有高度的异质性。我们问是否功能异质的子网络的限制特定的长程和局部突触前合奏。本研究为皮层子网络的组织提供了基于回路的机制。使用单细胞启动的,单突触狂犬病病毒示踪结合钙成像,我们发现,行为状态编码(自发运动)神经元显示出特征性的长程和局部突触前网络。我们的研究结果揭示了支持皮层主细胞功能异质性的连接规则。 在第四个项目中,我们研究了丘脑高级核在感觉知觉中的作用。躯体感觉是一个活跃的过程。尽管在主动感觉期间,动作和感觉紧密地结合在一起,取决于动物的目标,但介导这种相互作用的神经元基底和回路仍然知之甚少。解剖学研究表明,胡须依赖的感觉运动整合发生在大脑的多个闭合回路中。丘脑后内侧核(POm)是啮齿动物躯体感觉系统中的高级丘脑核,是与多个感觉和运动脑区广泛连接的解剖学枢纽,但它对被动感觉刺激和胡须运动的反应较弱。为了了解POm在感官知觉中的作用,我们开发了一个自我启动的,两个选择的强迫选择任务,在自由移动的动物在主动感知。利用光遗传学和化学遗传学操作,我们表明,POm丘脑核在感觉知觉中起着重要的作用,从初级躯体感觉皮层到POm的投射是POm在主动感知过程中对感觉知觉的贡献的关键。正在进行的工作研究动态的POM细胞在主动感知的神经元活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soohyun Lee其他文献

Soohyun Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soohyun Lee', 18)}}的其他基金

The Role of 5HT3aR GABAergic interneuron in sensory-motor integration in cortex
5HT3aR GABA能中间神经元在皮层感觉运动整合中的作用
  • 批准号:
    8202776
  • 财政年份:
    2011
  • 资助金额:
    $ 133.21万
  • 项目类别:
The Role of 5HT3aR GABAergic interneuron in sensory-motor integration in cortex
5HT3aR GABA能中间神经元在皮层感觉运动整合中的作用
  • 批准号:
    8470062
  • 财政年份:
    2011
  • 资助金额:
    $ 133.21万
  • 项目类别:
The Role of 5HT3aR GABAergic interneuron in sensory-motor integration in cortex
5HT3aR GABA能中间神经元在皮层感觉运动整合中的作用
  • 批准号:
    8507293
  • 财政年份:
    2011
  • 资助金额:
    $ 133.21万
  • 项目类别:
Circuit mechanisms underlying cortical communications
皮层通信的电路机制
  • 批准号:
    10001944
  • 财政年份:
  • 资助金额:
    $ 133.21万
  • 项目类别:
Circuit mechanisms underlying cortical communications
皮层通信的电路机制
  • 批准号:
    9568287
  • 财政年份:
  • 资助金额:
    $ 133.21万
  • 项目类别:
Circuit mechanisms underlying cortical communications
皮层通信的电路机制
  • 批准号:
    10929843
  • 财政年份:
  • 资助金额:
    $ 133.21万
  • 项目类别:
Circuit mechanisms underlying cortical communications
皮层通信的电路机制
  • 批准号:
    10266632
  • 财政年份:
  • 资助金额:
    $ 133.21万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 133.21万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了