P3: Internal Brain States
P3:大脑内部状态
基本信息
- 批准号:10705965
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-08 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimalsAreaArousalBRAIN initiativeBehaviorBehavioralBiological AssayBrainBrain regionCognitiveCollaborationsCommunicationCorpus striatum structureDataData ScienceData SetDecision AnalysisDecision MakingDependenceDiameterElectrophysiology (science)EtiologyExhibitsFiberFundingGeometryHungerHypothalamic structureLiteratureMeasurementMeasuresMemoryModelingMusNeuroanatomyNeuronsNonlinear DynamicsOpticsOutcomePhotometryPhysiologicalPhysiologyPopulationPupilRodentSensoryShort-Term MemorySignal TransductionStatistical ModelsStructureTestingThirstTimeTrainingWorkbasal forebrainbiophysical modelcholinergic neuronexperimental studyfollow-uplocus ceruleus structureneuralneural circuitneuromechanismnoradrenergicoptogeneticstheoriestool
项目摘要
Summary/Abstract: Project 3, Internal Brain States
Recent work from our collaboration has revealed that sensory decision-making in rodents relies on
time-varying internal states, with distinct decision-making strategies employed in different states. We have
developed a statistical model for identifying these states from decision-making behavior alone, and find that
mice switch among strategies on the timescale of tens to hundreds of task trials. This finding presents a major
challenge to traditional models of decision-making, which assume that trained animals rely on a single
evidence-accumulation strategy that is relatively fixed within a session. Furthermore, we found that inactivation
of the striatum affects the animal’s choices only in some states; in other states, decisions are not affected by
striatal inactivation, suggesting that mice rely on distinct neural circuits for making decisions in different states.
This project will follow up on this startling discovery in order to investigate the neural mechanisms underlying
internal states throughout the brain.
Aim 1 will focus on characterizing the neural basis for the internal states governing sensory
decision-making and working memory. We will use causal perturbations and large-scale neural recordings to
characterize how population activity varies across states, and use closed-loop optogenetic inactivation
experiments to examine how different brain regions contribute to decision-making in different states.
Aim 2 will look inside the brain to identify internal states from the dynamics of neural activity. We will
develop new models to characterize how internal states evolve on the timescale of single trials using spike
train data. We will then use these models to characterize state-dependent communication between brain
regions in large-scale multi-region electrophysiological recordings.
Aim 3 will focus on determining how the cognitive decision-making states identified by our model relate
physiologically-defined internal states such as thirst, hunger, and arousal. This will allow us to connect our
findings about decision-making strategies to the extensive literature on physiological internal states. To assay
arousal, we will measure pupil diameter and use fiber photometry to measure activity of noradrenergic
neurons in the locus coeruleus and cholinergic neurons in basal forebrain. As a neural readout of hunger and
thirst, we will measure activity in relevant hypothalamic neuron populations. These measurements will be
compared to internal states derived from our models.
We expect the experiments and modeling efforts in this project to substantially advance two priority
areas of the BRAIN Initiative: demonstrating causality and identifying fundamental principles.
项目3,大脑内部状态
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan William Pillow其他文献
Jonathan William Pillow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan William Pillow', 18)}}的其他基金
Cerebellar determinants of flexible and social behavior on rapid time scales in autism model mice.
自闭症模型小鼠快速时间尺度上灵活和社会行为的小脑决定因素。
- 批准号:
10204738 - 财政年份:2017
- 资助金额:
$ 38.23万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 38.23万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 38.23万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Training Grant