Project 5: Analysis

项目5:分析

基本信息

  • 批准号:
    9444134
  • 负责人:
  • 金额:
    $ 44.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Project Summary: Project 5, Analysis and Modeling of Neural Data Working memory, the ability to temporarily hold multiple pieces of information in mind for manipulation, is central to virtually all cognitive abilities. This multi-component research project aims to comprehensively dissect the neural circuit mechanisms of this ability across multiple brain areas. Large population recordings, such as those that will be obtained in other components of this proposal, open the door to assessing the dynamics of brain states on a single-trial, moment-by-moment basis. Yet their size and complexity present a challenge, as does the variety of data that will be collected, incorporating anatomy, behavior, neural activity, and perturbations. This project will develop and apply novel statistical analyses and modeling approaches to meet these challenges. The lion’s share of the variance in neural population activity is often dominated by variations in a small number of variables, which are called “latent variables.” This project will leverage the very large data sets, collected in other components of the project, of many simultaneously recorded neurons to develop advanced linear and nonlinear methods to identify the most informative latent variables. To analyze these datasets, the researchers will develop new latent variable discovery methods. First, they will combine advanced quantitative behavioral analysis with advanced statistical neural analysis. Second, they will combine latent space discovery with fitting of generalized linear models to neural data. The resulting nonlinear methods will provide an unprecedentedly complete statistical description of the data: these methods aim to simultaneously discover and capture the dynamics of the most important latent variables, and to produce a full statistical characterization of the responses of each individual recorded neuron. In biophysical modeling work, critical to creating a mechanistic understanding at the neural circuit level, this project will develop and test models of both local and multi-brain-region activity during working memory and decision-making. These models will build upon rigorous sensitivity-analysis techniques for identifying the critical network interactions underlying observed behavior. The models will be used both to interpret existing data and to design maximally informative experiments about inter-regional network interactions, and they will provide a principled platform from which to design future experiments that test specific hypotheses about function and further constrain the models.
项目概要:项目5,神经数据的分析和建模 工作记忆是一种在头脑中暂时保存多条信息以进行操作的能力, 对几乎所有认知能力都至关重要这一多方面的研究项目旨在全面 在多个大脑区域中剖析这种能力的神经回路机制。大量的人口记录, 例如,将在本提案的其他组成部分中获得的信息,为评估 在单次试验的基础上,每时每刻的大脑状态动态。然而,它们的规模和复杂性 挑战,以及将收集的各种数据,包括解剖学,行为,神经活动, 和扰动。该项目将开发和应用新的统计分析和建模方法, 迎接这些挑战。神经群体活动中的大部分变化通常由以下因素主导: 少数变量的变化,称为“潜在变量”。这个项目将利用非常 大型数据集,收集在该项目的其他组成部分,许多同时记录的神经元, 开发先进的线性和非线性方法,以确定最具信息量的潜在变量。分析 这些数据集,研究人员将开发新的潜在变量发现方法。首先,他们将联合收割机 高级定量行为分析和高级统计神经分析。第二,他们将联合收割机 用广义线性模型拟合神经数据发现潜在空间。由此产生的非线性方法 将提供前所未有的完整的数据统计描述:这些方法旨在 同时发现和捕捉最重要的潜在变量的动态,并产生一个 每个单独记录的神经元的反应的完整统计特征。在生物物理建模中 工作,关键是创造一个机械的理解在神经回路水平,这个项目将开发和 测试工作记忆和决策过程中局部和多脑区活动的模型。这些 模型将建立在严格的敏感性分析技术之上,用于识别关键的网络交互作用 潜在的观察行为。这些模型将用于解释现有数据,并最大限度地设计 关于区域间网络互动的信息实验,它们将提供一个原则性的平台, 从中设计未来的实验,测试关于功能的特定假设,并进一步限制 模型

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan William Pillow其他文献

Jonathan William Pillow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan William Pillow', 18)}}的其他基金

P3: Internal Brain States
P3:大脑内部状态
  • 批准号:
    10705965
  • 财政年份:
    2023
  • 资助金额:
    $ 44.56万
  • 项目类别:
Behavioral Analysis and Modeling Core
行为分析和建模核心
  • 批准号:
    10669686
  • 财政年份:
    2021
  • 资助金额:
    $ 44.56万
  • 项目类别:
Behavioral Analysis and Modeling Core
行为分析和建模核心
  • 批准号:
    10461996
  • 财政年份:
    2021
  • 资助金额:
    $ 44.56万
  • 项目类别:
Behavioral Analysis and Modeling Core
行为分析和建模核心
  • 批准号:
    10294672
  • 财政年份:
    2021
  • 资助金额:
    $ 44.56万
  • 项目类别:
Project 5: Analysis
项目5:分析
  • 批准号:
    9983180
  • 财政年份:
    2017
  • 资助金额:
    $ 44.56万
  • 项目类别:
Cerebellar determinants of flexible and social behavior on rapid time scales in autism model mice.
自闭症模型小鼠快速时间尺度上灵活和社会行为的小脑决定因素。
  • 批准号:
    10204738
  • 财政年份:
    2017
  • 资助金额:
    $ 44.56万
  • 项目类别:
Project 5: Analysis
项目5:分析
  • 批准号:
    10247569
  • 财政年份:
    2017
  • 资助金额:
    $ 44.56万
  • 项目类别:

相似海外基金

Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
  • 批准号:
    17K00727
  • 财政年份:
    2017
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
  • 批准号:
    9764503
  • 财政年份:
    2016
  • 资助金额:
    $ 44.56万
  • 项目类别:
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
  • 批准号:
    1632562
  • 财政年份:
    2016
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Standard Grant
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
  • 批准号:
    317469425
  • 财政年份:
    2016
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Research Grants
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
  • 批准号:
    1520137
  • 财政年份:
    2015
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
  • 批准号:
    26420620
  • 财政年份:
    2014
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
  • 批准号:
    22760469
  • 财政年份:
    2010
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
  • 批准号:
    327691-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 44.56万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了