Detecting structural variants in a large population of samples through high-throughput sequencing data
通过高通量测序数据检测大量样本中的结构变异
基本信息
- 批准号:10797960
- 负责人:
- 金额:$ 5.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAreaBase PairingComplexCopy Number PolymorphismDNA sequencingDataData SetDetectionDevelopmentDiploidyDiseaseEtiologyGenerationsGeneticGenetic Predisposition to DiseaseGenetic VariationGenomicsHaplotypesHereditary DiseaseHigh-Throughput Nucleotide SequencingHuman GenomeIndividualLinkLinkage Disequilibrium MappingMalignant NeoplasmsMapsMethodsPatientsPatternPhasePhenotypePopulationPopulation ControlResearchRiskSamplingTechnologyThird Generation SequencingVariantcomputerized toolsdesigngenome wide association studygenome-wideimprovedinsightsingle-cell RNA sequencingtooltranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY
The mapping of the human genome and genome wide association studies have provided great insights in our
understanding of the genetic etiology of hereditary diseases; however, critical gaps remain. A type of genetic
variations that has been difficult to detect in genomic studies has been Structural Variants (SVs), disruptions
involving more than 50 base pairs. SVs have been implicated in a lot of inherited diseases and cancers, yet
their detection remains challenging with conventional DNA sequencing methods. Developments in third-
generation sequencing (linked-read and long-read sequencing) and single-cell RNA sequencing (scRNA-seq)
provide an opportunity to greatly improve the detection of SVs and Copy Number Variations (CNVs), one
common type of SVs. However, existing computational tools do not fully take advantage of the potential and
the opportunities that these technologies offer. In this project, drawing from our unique expertise in this rapidly
evolving area, we propose the development of a new generation of tools that will improve greatly the detection
and phasing of SVs from a large population of samples. We will develop computational tools to generate a
high-quality diploid assembly from each individual and to combine data from large populations of controls and
patients to characterize SVs that confer risk for any particular disease. We will further design a haplotype-
based linkage disequilibrium (LD) mapping approach at the whole genome scale to identify unique sharing
haplotype patterns and provide a new perspective for complex disease studies. Detecting SVs in combination
with small variants will further allow us to explain the etiology of complex diseases. We will also develop
algorithms to detect CNVs from scRNA-seq datasets, which have application in cancer studies. Successful
completion of this project will constitute a major step forward in uncovering the genetic cause of complex
diseases and cancers.
项目总结
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ADEPT: Autoencoder with differentially expressed genes and imputation for robust spatial transcriptomics clustering.
- DOI:10.1016/j.isci.2023.106792
- 发表时间:2023-06-16
- 期刊:
- 影响因子:5.8
- 作者:Hu, Yunfei;Zhao, Yuying;Schunk, Curtis T.;Ma, Yingxiang;Derr, Tyler;Zhou, Xin Maizie
- 通讯作者:Zhou, Xin Maizie
Leveraging cross-source heterogeneity to improve the performance of bulk gene expression deconvolution.
利用跨源异质性来提高批量基因表达反卷积的性能。
- DOI:10.1101/2024.04.07.588458
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Shen,Wenjun;Liu,Cheng;Hu,Yunfei;Lei,Yuanfang;Wong,Hau-San;Wu,Si;Zhou,XinMaizie
- 通讯作者:Zhou,XinMaizie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Zhou其他文献
Xin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Zhou', 18)}}的其他基金
Engineering programmable enzymes for proteome editing
用于蛋白质组编辑的工程可编程酶
- 批准号:
10686522 - 财政年份:2023
- 资助金额:
$ 5.26万 - 项目类别:
Detecting structural variants in a large population of samples through high-throughput sequencing data
通过高通量测序数据检测大量样本中的结构变异
- 批准号:
10707270 - 财政年份:2022
- 资助金额:
$ 5.26万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10202076 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
New Statistical Methods for Cox Regression with Measurement Errors in Cancer and Nutritional Epidemiology
癌症和营养流行病学中具有测量误差的 Cox 回归的新统计方法
- 批准号:
10409754 - 财政年份:2021
- 资助金额:
$ 5.26万 - 项目类别:
Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
- 批准号:
10260568 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
- 批准号:
10573420 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
Interrogating and rewiring cell signaling pathways in CAR-T cells with synthetic phosphotyrosine recognition domains
具有合成磷酸酪氨酸识别域的 CAR-T 细胞中询问和重新布线细胞信号通路
- 批准号:
10617843 - 财政年份:2020
- 资助金额:
$ 5.26万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 5.26万 - 项目类别:
Standard Grant














{{item.name}}会员




