Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
基本信息
- 批准号:10798818
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AwardBiologicalCell CommunicationCell physiologyCellsChromatinDataDependenceDimensionsFormulationFutureGene ExpressionGenomicsIndividualKnowledgeLearningLocationMethodsModalityModelingMultiomic DataOrganismOutputParentsPopulationResearch PersonnelSignal TransductionTechnologyTimecell typedata integrationdesigngene regulatory networkmultimodal datamultiple data typesmultiple omicstranscription factortranscriptome sequencing
项目摘要
Single cell genomics technologies have allowed researchers to study differences between single cells. In order
to understand how every cell functions in the whole living organism, cells need to be studied in the context of
both time and space. Researchers would like to learn a comprehensive picture of each single cell, including its
current cell state and predicted future state, and how it interacts with neighboring cells during the temporal
dynamics. So the step after gaining a certain amount of knowledge of single cells is to go from “parts” to
“whole”. This proposal discusses advances that can be brought to the study of both temporal dynamics
and spatial interactions between cells. The theme of this proposal is “integration”.
Existing integrative methods for single cell data focus on two scenarios: 1) integrate the same type of data (eg.
RNA-Seq data) from multiple batches; 2) integrate multiple types of data performed on the same cells, which is
also called multi-modality data or multi-omics data. This proposal highlights concepts and methods to
integrate multi-omics data to understand cell temporal dynamics and regulatory mechanisms, while
taking into account dependency between data modalities, which is rare in current methods. A new
concept of “problem integration”, where related computational formulations can be connected to
provide a consistent and more general picture of a certain aspect of cells, is also presented here.
In order to study different aspects of a cell, different computational problems have been formulated, eg.,
clustering of cells, inference of cell trajectories, inference of gene regulatory networks (GRNs), etc. The idea of
unifying or connecting related computational problems, such that a unified framework can involve or
output the information that is previously used in multiple individual computational problems, is proposed. In
particular, a unified framework for cell temporal dynamics analysis involving related computational
tasks, is presented.
So far the multi-omics integration methods often deploy the integrated data to cluster cells for cell type
identification. Few methods on data integration are designed for temporal analysis with continuous populations,
or to learn biological mechanisms like GRNs. So another direction proposed here is to infer the trajectory of
cells with both gene-expression (scRNA-seq) and chromatin accessibility (scATAC-seq) data; with the inferred
trajectory, the effect of chromatin accessibility on gene-expression can be studied, and GRNs can be
reconstructed while taking into account this effect.
In reality, a gene’s expression level is determined by multiple factors: its transcription factor (TF), its chromatin
accessibility and the signal a cell receives from other neighboring cells through cell-cell interaction. Therefore,
another important dimension to consider about the cells is the spatial location of cells. It is proposed to
ßreconstruct a generalized GRN which models inter-cell regulatory interactions.
单细胞基因组技术使研究人员能够研究单细胞之间的差异。为了
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LinRace: cell division history reconstruction of single cells using paired lineage barcode and gene expression data.
LinRace:使用配对谱系条形码和基因表达数据重建单细胞的细胞分裂历史。
- DOI:10.1038/s41467-023-44173-3
- 发表时间:2023-12-16
- 期刊:
- 影响因子:16.6
- 作者:Pan, Xinhai;Li, Hechen;Putta, Pranav;Zhang, Xiuwei
- 通讯作者:Zhang, Xiuwei
scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data.
scDisInFact:用于整合和预测多批次多条件单细胞 RNA 测序数据的解缠结学习。
- DOI:10.1101/2023.05.01.538975
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang,Ziqi;Zhao,Xinye;Qiu,Peng;Zhang,Xiuwei
- 通讯作者:Zhang,Xiuwei
TedSim: temporal dynamics simulation of single-cell RNA sequencing data and cell division history.
- DOI:10.1093/nar/gkac235
- 发表时间:2022-05-06
- 期刊:
- 影响因子:14.9
- 作者:Pan, Xinhai;Li, Hechen;Zhang, Xiuwei
- 通讯作者:Zhang, Xiuwei
LinRace: single cell lineage reconstruction using paired lineage barcode and gene expression data.
LinRace:使用配对谱系条形码和基因表达数据进行单细胞谱系重建。
- DOI:10.1101/2023.04.12.536601
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pan,Xinhai;Li,Hechen;Putta,Pranav;Zhang,Xiuwei
- 通讯作者:Zhang,Xiuwei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiuwei Zhang其他文献
Xiuwei Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiuwei Zhang', 18)}}的其他基金
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10276948 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10466944 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
Studying temporal dynamics and regulatory mechanisms of single cells with a unified framework and multi-omics data
利用统一的框架和多组学数据研究单细胞的时间动态和调控机制
- 批准号:
10678861 - 财政年份:2021
- 资助金额:
$ 4.79万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant