Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
基本信息
- 批准号:10797426
- 负责人:
- 金额:$ 2.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAffectAnimalsBrainCardiac MyocytesCardiomyopathiesCell LineCell physiologyCellsChronicCouplingDiseaseDrug ScreeningEngineeringFeedbackFluorescent ProbesFunctional disorderGenetic EngineeringGoalsHungaryKineticsLibrariesLinkLocationMicrofluidicsMicroscopyModelingMonitorMusMutationNerve DegenerationNeuronsOrganOxidative StressPathologicPhysiologic MonitoringPhysiological ProcessesProcessProtein EngineeringProteinsRandomizedReactive Oxygen SpeciesReporterResearch PersonnelResolutionResourcesSecond Messenger SystemsSignal TransductionSpeedStressStructureTestingTimeVariantcell typecellular targetingdesigndisease phenotypehigh throughput screeninghuman stem cellsimprovedin vivoinnovationinstrumentnovelnovel therapeutic interventionprotein structurerestraintsensorstem cellsstressorsubcellular targetingsuccess
项目摘要
PROJECT SUMMARY / ABSTRACT
Elevated levels of reactive oxygen species (ROS) are linked to severe pathological conditions causing
cardiomyopathies and neurodegeneration. Today we can utilize fluorescent probes to detect dynamic changes
in ROS levels in cell physiology and pathophysiology. However, many ROS sensors’ capabilities are still limited
by small signal amplitudes, slow kinetics, low sensitivity, in vivo incompatibility, and cellular and subcellular
targeting restraints. Thus, monitoring ROS in real-time in cells and behaving animals is still very restricted. Our
central goal in this proposal is to resolve current limitations in ROS protein sensors. We will combine structured-
guided protein design and functional high-throughput screening of large variant libraries in an innovative
approach to engineer novel ROS sensors. We expect that significantly increasing signal amplitudes, kinetics
and sensitivity, will enable us to monitor ROS signaling for the first time in the brain of behaving mice.
Furthermore, we will validate sensors in models for neurodegeneration and cardiomyopathies with subcellular
precision in human stem-cell-derived cell lines. In the first aim, we will use protein structures to guide targeted
mutations to increase ROS sensitivity and allosteric coupling between the sensor and reporter domain. In the
second aim, we will use a novel engineering platform for fluorescent sensors to screen large libraries of
randomized variants. The fast, iterative process has the potential to significantly accelerate the optimization of
sensor frameworks established in Aim 1. In the third aim, we will validate our sensors in several realistic use
scenarios to receive immediate feedback for further refinement of sensor function. This includes monitoring ROS
as second messengers in behaving mice and monitoring oxidative stress as an indicator for pathophysiology in
stem-cell-derived neurons and cardiomyocytes. This proposal is significant because oxidative stress is common
and can affect every organ and cell type resulting in many severe diseases. Recent progress in fluorescent
microscopy allows us to utilize specific probes to monitor physiological processes with increasing precision. Our
project is innovative because the proposed approach will provide the fastest throughput for designing highly
efficient ROS sensor proteins. Furthermore, the improved sensors will be able to causally link disease
phenotypes to acute and chronic stressors of oxidative stress with significantly increased temporal and spatial
resolution.
Here we request the purchase of a microfluidic valve control from CellSorter Company for Innovations,
Hungary to more efficiently pick cells from PDMS microarrays during high-throughput screening in Aim 2.
Integration of the instrument into our existing pipeline will further increase throughput, and the success rate to
retrieve highly optimized ROS sensors while also reducing time and resource commitments.
项目总结/摘要
活性氧(ROS)水平升高与严重的病理状况有关,
心肌病和神经变性。今天,我们可以利用荧光探针来检测动态变化
在细胞生理学和病理生理学中的活性氧水平。然而,许多ROS传感器的能力仍然有限
通过小信号幅度、慢动力学、低灵敏度、体内不相容性、以及细胞和亚细胞
瞄准限制。因此,实时监测细胞和行为动物中的ROS仍然非常有限。我们
该提案的中心目标是解决ROS蛋白传感器的现有局限性。我们将联合收割机-
指导蛋白质设计和功能性高通量筛选大型变异库,
设计新型ROS传感器的方法我们预期显著增加的信号幅度、动力学
和灵敏度,将使我们能够监测活性氧信号的第一次在大脑中的行为小鼠。
此外,我们将在神经变性和心肌病模型中验证传感器,
人类干细胞衍生细胞系的精确度。在第一个目标中,我们将使用蛋白质结构来引导靶向的
突变以增加ROS敏感性和传感器与报告结构域之间的变构偶联。在
第二个目标,我们将使用一种新的荧光传感器工程平台来筛选大型的
随机变量。快速的迭代过程有可能显著加速
Aim 1中建立的传感器框架。在第三个目标中,我们将在几个实际应用中验证我们的传感器
场景接收即时反馈,以进一步完善传感器功能。这包括监测ROS
作为第二信使在行为小鼠和监测氧化应激作为指标的病理生理学,
干细胞衍生的神经元和心肌细胞。这一建议意义重大,因为氧化应激是常见的
并且可以影响每个器官和细胞类型,导致许多严重的疾病。荧光染料的最新进展
显微镜使我们能够利用特定的探针以越来越高的精度监测生理过程。我们
项目是创新的,因为所提出的方法将提供最快的吞吐量设计高度
高效ROS传感器蛋白。此外,改进的传感器将能够将疾病与疾病之间的因果关系联系起来,
急性和慢性氧化应激应激表型与显着增加的时间和空间
分辨率
在这里,我们要求从CellSorter公司购买微流体阀控制创新,
匈牙利在Aim 2的高通量筛选过程中更有效地从PDMS微阵列中挑选细胞。
将该仪器集成到我们现有的管道中将进一步增加吞吐量,
检索高度优化的ROS传感器,同时还减少了时间和资源的承诺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Berndt其他文献
Andre Berndt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Berndt', 18)}}的其他基金
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
High-throughput engineering of ligand-selective fluorescent biosensors for detecting endogenous and exogenous opioids
用于检测内源性和外源性阿片类药物的配体选择性荧光生物传感器的高通量工程
- 批准号:
10635413 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10092345 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10337219 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
In vivo real-time monitoring of reactive oxygen species and opioid signaling in a model for opioid receptor activity.
阿片受体活性模型中活性氧和阿片信号传导的体内实时监测。
- 批准号:
10369709 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
Structure-guided and high-throughput engineering of genetically encoded sensors for reactive oxygen species
活性氧基因编码传感器的结构引导和高通量工程
- 批准号:
10551906 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 2.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Operating Grants