Human gene duplications in neurodevelopment and disease
神经发育和疾病中的人类基因重复
基本信息
- 批准号:10803027
- 负责人:
- 金额:$ 69.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:BenchmarkingBioinformaticsBiologicalBiological AssayBiological ModelsBrainCandidate Disease GeneClustered Regularly Interspaced Short Palindromic RepeatsComplementComplexCopy Number PolymorphismCoupledDataData SetDevelopmentDevelopmental ProcessDiseaseEmbryoEtiologyEvolutionExhibitsEye DevelopmentFamilyGene DuplicationGenesGeneticGenetic DiseasesGenetic HeterogeneityGenetic RiskGenetic ScreeningGenetic VariationGenomeGenomicsHumanHuman GeneticsHuman GenomeImageKnock-outLeftLifeLocationMapsMessenger RNAMethodsModelingModernizationMorphologyMusMutationNeurodevelopmental DisorderNeurologicNeuronsOrthologous GenePhenotypePongidaePopulationPopulation ControlPrimatesProliferatingProteinsPublicationsPublishingRecurrenceRoleSRGAP2 geneSamplingSequence AnalysisSiblingsSignal TransductionSocietiesSourceSpecific qualifier valueTestingTimeVariantZebrafishautism spectrum disorderautistic childrenaxon guidancebioinformatics pipelinecausal variantcohortexperiencefallsfetalfrontierfunctional genomicsgene conservationgene functiongenetic variantgenomic locushuman pangenomehuman reference genomeimprovedindividuals with autism spectrum disorderinnovationinsightmutantneuralneurodevelopmentparalogous genepatient screeningprobandrare variantreference genomesingle-cell RNA sequencingsynaptic functionsynaptogenesistelomeretooltraittranscriptome sequencingwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite significant efforts to identify genes important in human neurodevelopment and disease, a large
proportion of genes and variants remain undiscovered. Duplicated parts of the genome are largely
understudied due to historical errors in the reference and bioinformatic pipelines that filter reads mapping to
multiple locations in the genome. With the recent publication of a complete telomere-to-telomere human
genome, genes and variants can be more effectively assayed across complex loci, but modified computational
approaches are necessary. The proposed study will leverage diverse expertise in functional genomics
and human genetics to test the hypothesis that a subset of human duplicated genes both contribute to
neurological features and cause disorders exclusive to modern-day humans. Duplicated genes have
previously been shown to play a role in early brain development and are enriched at genomic hotspots where
recurrent copy-number variants are associated with neurodevelopmental disorders. Starting with a
comprehensive list of thousands of human duplicated genes, functions of a subset of genes expressed during
human corticogenesis will be tested using CRISPR knockout of orthologs and expression of human paralogs in
zebrafish to determine their effects on general morphology, synaptic function, and brain development. The
ability to test tens to hundreds of genes in parallel and conservation of basic developmental processes—such
as neural proliferation, axonal guidance, and synaptogenesis—make zebrafish an ideal model to test these
genes. Second, a genetic screen will be performed in human population cohorts to identify conserved
duplicated genes. Since standard methods filter variants across many complex genomic loci, an improved
bioinformatics approach leveraging short-read data will be devised and optimized using available sequencing
benchmarks. Further, conserved genes will be screened for de novo and rare variants in autistic individuals
using published datasets. Leveraging this multifaceted approach will enable systematic assessment of
duplicated genes and their putative roles in human neurological traits and disorders. The zebrafish toolkit will
be generally applicable to assaying functions of additional (non-duplicated) genes important in brain
development, while the improved bioinformatics approach will enable additional screens of duplicated genes in
other disease cohorts. This project will not only provide important insights into what it means to be human, but
also it has the capability to discover missing genetic risk and elucidate the etiology of complex genetic neural
traits and disorders.
项目摘要/摘要
尽管在识别人类神经发育和疾病中的重要基因方面做出了重大努力,但大量的
基因和变种的比例仍未被发现。基因组的复制部分很大程度上
由于过滤器读取映射到的参考和生物信息管道中的历史错误而研究不足
基因组中的多个位置。最近发表了一个完整的端粒到端粒的人类
基因组、基因和变种可以更有效地跨复杂的位置进行分析,但修改了计算
方法是必要的。拟议的研究将利用功能基因组学方面的不同专业知识。
和人类遗传学来检验这一假设,即人类复制的基因的子集都有助于
神经学特征和导致现代人类独有的疾病。复制的基因有
以前被证明在早期大脑发育中发挥作用,并在基因组热点中得到丰富
反复出现的拷贝数变异与神经发育障碍有关。以一个
数千个人类复制基因的综合清单,在此期间表达的基因子集的功能
将使用CRISPR敲除同源基因和表达人类Paralog来测试人类皮质生成
斑马鱼以确定其对一般形态、突触功能和大脑发育的影响。这个
并行测试数十到数百个基因的能力以及基本发育过程的保守性--如
作为神经增殖、轴突引导和突触发生-使斑马鱼成为测试这些的理想模型
基因。第二,将在人类群体队列中进行基因筛查,以确定受保护的
复制的基因。由于标准方法过滤了许多复杂基因组座位上的变异,因此改进的
利用短读数据的生物信息学方法将利用现有的测序进行设计和优化
基准。此外,将对自闭症患者的保守基因进行从头开始和罕见变异的筛查。
使用已发布的数据集。利用这种多方面的方法将能够系统地评估
复制基因及其在人类神经学特征和疾病中的推定作用。斑马鱼工具包将
一般适用于分析大脑中重要的附加(非重复)基因的功能
开发,而改进的生物信息学方法将使额外的重复基因筛查成为可能
其他疾病队列。这个项目不仅将提供对人类意味着什么的重要见解,而且
此外,它还具有发现丢失的遗传风险和阐明复杂遗传神经的病因的能力
特征和障碍。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Y Dennis其他文献
Transforming our understanding of species-specific gene regulation
改变我们对物种特异性基因调控的理解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Megan Y Dennis - 通讯作者:
Megan Y Dennis
Megan Y Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Y Dennis', 18)}}的其他基金
Parallel assessment of neurodevelopment genes implicated in autism using zebrafish
使用斑马鱼并行评估与自闭症有关的神经发育基因
- 批准号:
10666213 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Parallel assessment of neurodevelopment genes implicated in autism using zebrafish
使用斑马鱼并行评估与自闭症有关的神经发育基因
- 批准号:
10842174 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Characterization of Human-Specific Duplicated Genes Implicated in Neurocognitive
与神经认知有关的人类特异性重复基因的表征
- 批准号:
9186571 - 财政年份:2016
- 资助金额:
$ 69.48万 - 项目类别:
Characterization of Human-Specific Duplicated Genes Implicated in Neurocognitive
与神经认知有关的人类特异性重复基因的表征
- 批准号:
8565256 - 财政年份:2013
- 资助金额:
$ 69.48万 - 项目类别:
Characterization of Human-Specific Duplicated Genes Implicated in Neurocognitive
与神经认知有关的人类特异性重复基因的表征
- 批准号:
8722642 - 财政年份:2013
- 资助金额:
$ 69.48万 - 项目类别:
Genetic & Functional Analysis of Variants Associated with Neurocognitive Disorder
遗传
- 批准号:
8254117 - 财政年份:2012
- 资助金额:
$ 69.48万 - 项目类别:
Genetic & Functional Analysis of Variants Associated with Neurocognitive Disorder
遗传
- 批准号:
8412056 - 财政年份:2012
- 资助金额:
$ 69.48万 - 项目类别:
相似海外基金
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318829 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Continuing Grant
Analysis of biological small molecule mixtures using multiple modes of mass spectrometric fragmentation coupled with new bioinformatics workflows
使用多种质谱裂解模式结合新的生物信息学工作流程分析生物小分子混合物
- 批准号:
BB/X019802/1 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Research Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318830 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
- 批准号:
2318831 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Continuing Grant
Bioinformatics-powered genetic characterization of the impact of biological systems on Alzheimer's disease and neurodegeneration
基于生物信息学的生物系统对阿尔茨海默病和神经退行性疾病影响的遗传表征
- 批准号:
484699 - 财政年份:2022
- 资助金额:
$ 69.48万 - 项目类别:
Operating Grants
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1949968 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
Standard Grant
REU Site: Bioinformatics Research and Interdisciplinary Training Experience in Analysis and Interpretation of Information-Rich Biological Data Sets (REU-BRITE)
REU网站:信息丰富的生物数据集分析和解释的生物信息学研究和跨学科培训经验(REU-BRITE)
- 批准号:
1559829 - 财政年份:2016
- 资助金额:
$ 69.48万 - 项目类别:
Continuing Grant
Bioinformatics Tools to Design and Optimize Biological Sensor Systems
用于设计和优化生物传感器系统的生物信息学工具
- 批准号:
416848-2011 - 财政年份:2011
- 资助金额:
$ 69.48万 - 项目类别:
University Undergraduate Student Research Awards
ABI Development: bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of Large-Scale Biological Data
ABI 开发:bioKepler:用于大规模生物数据分布式分析的综合生物信息学科学工作流程模块
- 批准号:
1062565 - 财政年份:2011
- 资助金额:
$ 69.48万 - 项目类别:
Continuing Grant
Bioinformatics-based hypothesis generation with biological validation for plant stress biology
基于生物信息学的假设生成和植物逆境生物学的生物验证
- 批准号:
261818-2006 - 财政年份:2010
- 资助金额:
$ 69.48万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




