Molecular mechanisms of dystonia and spastic paraplegia associated with mutations in ATP5G3
与 ATP5G3 突变相关的肌张力障碍和痉挛性截瘫的分子机制
基本信息
- 批准号:10799993
- 负责人:
- 金额:$ 40.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAmino Acid SubstitutionAnimal ModelBehavioralBehavioral AssayBiochemicalBiologicalBiological ModelsCell Culture TechniquesCellsCharacteristicsClinical TreatmentClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexCorpus striatum structureCorticospinal TractsDNADefectDiseaseDominant Genetic ConditionsDominant-Negative MutationDrosophila genusDystoniaElectrophysiology (science)EquilibriumEscherichia coliFamilyFibroblastsFocal DystoniasFunctional disorderGait abnormalityGenesGeneticGenetic DiseasesHeterozygoteHumanInheritedInsectaInvestigationInvoluntary MovementsKnock-outKnockout MiceLegLimb structureLinkLower ExtremityMammalsMissense MutationMitochondriaModelingMolecularMolecular AnalysisMovementMusMuscleMuscle ContractionMutant Strains MiceMutationNatureNeurologicNeurologic DysfunctionsNeuronal PlasticityOrthologous GeneOsteogenesis ImperfectaPathogenicityPathologicPathologyPathway interactionsPatientsPatternPenetrancePhenotypeProbabilityProductionProteinsProtonsPublishingReportingRoleSmooth MuscleSpastic ParaplegiaSynaptic TransmissionSystemTestingThalamic structureVariantage relatedautosomal dominant mutationautosomebase editingcitrate carrierde novo mutationeffective therapyexperimental studyflygenetic analysisin vitro Modelin vivoinsightlimb movementmouse modelmutantnervous system disorderneuromuscularnoveloligomycin sensitivity-conferring proteinoverexpressionspasticity
项目摘要
Dystonia and spastic paraplegia are debilitating neurological conditions with distinct signs and underlying
pathophysiology. Dystonia describes a range of conditions characterized by involuntary muscle contraction,
while spastic paraplegias are characterized by progressive weakness and stiffness of the leg muscles.
Previously, a large family was published displaying an autosomal dominant pattern of progressive, age-
dependent spastic paraplegia and incomplete penetrance for generalized and focal dystonia. Genetic analysis
showed that both phenotypes were connected to a single novel missense mutation in the gene ATP5G3
(c.318C>G, p.N106K), which encodes subunit c of ATP synthase. Recently, the pathology of this variant was
confirmed by the identification of a dystonia patient from a second family who was found to be carrying the same
mutation as a de novo mutation. Further experiments demonstrated that ATP production and complex V activity
were significantly reduced in patient fibroblasts, consistent with the predicted role of ATP5G3. As additional
confirmation, experiments were also performed in Drosophila utilizing overexpression of the equivalent missense
mutation, which resulted in a significant disruption in the flies’ locomotor ability and complex V activity. Based on
these preliminary results, the central hypothesis of this proposal is that the p.N106K mutation acts in a dominant
negative manner to disrupt complex V function, leading to the dystonia and spastic paraplegia phenotype. This
hypothesis will be tested using three complementary approaches. First, experiments will be performed to
characterize a newly generated mouse model carrying a missense mutation equivalent to the pathogenic human
mutation (p.N105K) using behavioral, molecular, and electrophysiological approaches. Second, the biochemical
mechanisms of the p.N106K mutation will be elucidated using the E. coli ATP synthase system. Specifically,
mutations will generated with the equivalent “humanized” substitutions for suspected autosomal dominant
ATP5G3 mutations in the bacterial subunit c protein. The biochemical effects of each of these substitutions will
then be explored in the bacterial ATP Synthase, particularly as it relates to assembly of the c-ring, the physical
interaction of the F1 the Fo complexes, and/or proton translocation. Finally, effective therapies will be developed
for the ATP5G3N106K mutation by using CRISPR-based gene editing to inactivate the dominant p.N106K allele in
patient fibroblasts. After optimizing the editing efficiency in cell culture, the feasibility of using CRISPR-based
inactivation as an in vivo treatment approach will be evaluated using Atp5g3N105K mutant mice. The results of this
experiment will help lay the groundwork for developing CRISPR-based editing as a possible treatment for genetic
diseases caused by dominant negative mutation such as osteogenesis imperfecta, which is probably the only
option for treatment. This comprehensive characterization of these ATP5G3 mutations will yield valuable insights
into dystonia and spastic paraplegia, complex V functionality, and the pathology and treatment of autosomal
dominant genetic diseases, particularly those caused by dominant negative mutations.
肌张力障碍和痉挛性截瘫是使人衰弱的神经系统疾病,具有明显的症状和潜在危险
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jesse David Slone其他文献
Jesse David Slone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Phenotypic consequences of a modern human-specific amino acid substitution in ADSL
ADSL 中现代人类特异性氨基酸取代的表型后果
- 批准号:
24K18167 - 财政年份:2024
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Estimation of stability and functional changes due to amino acid substitution using molecular simulations
使用分子模拟估计氨基酸取代引起的稳定性和功能变化
- 批准号:
20H03230 - 财政年份:2020
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of the mechanisms of prion protein conversion caused by an amino acid substitution in glycosylphosphatidylinositol anchoring signal peptide
阐明糖基磷脂酰肌醇锚定信号肽中氨基酸取代引起的朊病毒蛋白转化机制
- 批准号:
16K18790 - 财政年份:2016
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Amino acid substitution without genetic modification
无需基因改造的氨基酸替代
- 批准号:
15H05491 - 财政年份:2015
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Study on PSII hydrogen bond networks by exhaustive amino acid substitution
穷举氨基酸取代研究PSII氢键网络
- 批准号:
15K07110 - 财政年份:2015
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the effect of HCV propagationa and IFN sensitivity by amino acid substitution in interferon sensitivity-determining region.
阐明干扰素敏感性决定区氨基酸取代对 HCV 传播和干扰素敏感性的影响。
- 批准号:
26860309 - 财政年份:2014
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The analysis of the restriction of amino acid substitution on the hemagglutinin molecule of influenza A virus
甲型流感病毒血凝素分子氨基酸取代限制性分析
- 批准号:
14370104 - 财政年份:2002
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changes in the Substrate Specificities of Farnesyl Diphosphate Synthase by a Single Amino Acid Substitution
单一氨基酸取代对法尼基二磷酸合酶底物特异性的变化
- 批准号:
12680587 - 财政年份:2000
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses of the Relationship between Amino Acid Substitution and Phenotype of the Tail Sheath Protein of Bacteriophage T4
噬菌体T4尾鞘蛋白氨基酸取代与表型关系分析
- 批准号:
02680125 - 财政年份:1990
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Hypothesis: Both appearance and disappearance of viruses are controlled by the accumulation of amino acid substitution in receptor binding domain
假设:病毒的出现和消失都是由受体结合域氨基酸取代的积累控制的
- 批准号:
02454184 - 财政年份:1990
- 资助金额:
$ 40.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




