Function and Evolutionary Origins of the RAG Endonuclease
RAG 核酸内切酶的功能和进化起源
基本信息
- 批准号:10801641
- 负责人:
- 金额:$ 62.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-11 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive Immune SystemAddressAllelesAntigen ReceptorsArchitectureB-Cell DevelopmentBiochemicalBiochemistryBiologicalBiological AssayBiologyCell LineCellsChimeric ProteinsChromatinChromosome PairingClosure by clampComplexCoupledCryoelectron MicroscopyDNADNA BindingDangerousnessDevelopmentElementsEngineeringEnsureEnzymesEphrin-A5EventEvolutionFamilyFunctional disorderFundingGenomeGenome StabilityGenomic InstabilityGenomicsGoalsHeartHematopoietic NeoplasmsHuman ChromosomesHuman GenomeImmune systemIn VitroInsertional MutagenesisIntegration Host FactorsInvertebratesJawLabelLeadLeftLinkLymphocyteLymphoidMalignant NeoplasmsMediatingMethodsModelingMolecularMusMutagenesisOutcomeProtein BiochemistryProteinsPublishingRag1 MouseReceptor GeneRecording of previous eventsRegulationSiteStructureT-LymphocyteTestingToxinTransposaseV(D)J RecombinationWorkadaptive immunityantitoxindesignendonucleaseexperimental studyfascinategenotoxicityin vitro Modelin vivoinsightleukemia/lymphomamutantnovelpreventrecombinasereconstitutionstructural biologytooltumorigenesis
项目摘要
SUMMARY
The RAG recombinase is a domesticated transposase that initiates V(D)J recombination and contributes
significantly to genome instability. To understand the mechanisms that protect the genome from dangerous
RAG endonuclease/transposase activity, we have taken a distinctive approach that melds evolutionary
biology with biochemistry and structural biology. From structures of ancestral RAG-like (RAGL) transposases,
we discovered RAG’s fundamental modular organization, an “on-off” switch that controls properly regulated
(“coupled”) cleavage, a novel DNA binding module that disrupts proper target site selection, and four
evolutionary adaptations in RAG that together provide powerful, multilayered protection against transposition.
These advances helped establish our current paradigm for RAG’s evolutionary origins and support a “DNA
confinement” model to explain errors in RAG targeting. Using these novel conceptual frameworks and our
recent discovery of a critical “missing link” in RAG’s evolutionary history, we will pursue our central objective:
to understand the mechanisms that ensure that RAG cuts appropriate targets in a properly orchestrated
(“coupled”) manner as well as the mechanisms that protect against catastrophic insertional mutagenesis due
to transposition into the genome. To achieve this objective, we will pursue the following aims:
Aim 1. Determine the evolutionary, structural, and biochemical basis of the RAGL→RAG transition.
We will systematically dissect the activity and structure of “missing link” RAGL transposases and rigorously
test the predictions of our DNA confinement and “on-off” switch models using in vitro protein biochemistry, a
suit of in vivo cleavage and transposition assays, cryo-electron microscopy, and chimeric RAG enzymes
engineered to possess carefully perturbed DNA binding and cleavage activities.
Aim 2. Determine the mechanisms by which RAG2 suppresses RAG-mediated transposition in vivo.
RAG2 and, surprisingly, “missing link” RAG2L proteins, possess an acidic hinge domain that powerfully
suppresses transposition, leading us to propose that RAG2L arose early in evolution as an “antitoxin” to
suppress the genotoxic potential of RAG1L (the transposase “toxin”). We will determine the protein residues
and mechanisms that mediate the suppressive activity of the acidic hinge and a second suppressive region
in RAG2, the LF2F3 loop, using an array of biochemical reconstitution and proximity labeling approaches.
Aim 3. Determine the biological and genomic consequences of hyperactivated/dysregulated RAG in
cells and mice. The goal of this aim is to connect mechanistic understanding to biological outcome. Using in
vivo transposition assays and mice harboring mutant RAG alleles, we will answer two outstanding questions:
i) Which RAG adaptations are needed to suppress RAG-mediated transposition from one site in the genome
to another? ii) What are the consequences for the genome, lymphoid development, and tumorigenesis, of
unleashing RAG-mediated transposition or of uncoupling and mistargeting RAG’s cleavage activity?
摘要
RAG重组酶是一种驯化的转座酶,它启动V(D)J重组并对
对基因组的不稳定性有重大影响。为了了解保护基因组免受危险的机制
RAG内切酶/转座酶活性,我们采取了一种独特的方法,将进化
生物学与生物化学和结构生物学。从祖传RAG样转座酶(RAGL)的结构,
我们发现了RAG的基本模块化结构,一个控制适当调节的“开-关”开关
(“偶联”)切割,一种新的DNA结合模块,它扰乱了正确的靶点选择,以及四个
RAG中的进化适应共同提供了强大的多层保护,防止移位。
这些进展帮助建立了我们目前关于RAG进化起源的范例,并支持
限制“模型来解释RAG目标定位中的错误。使用这些新颖的概念框架和我们的
最近在RAG的进化史上发现了一个关键的“缺失环节”,我们将追求我们的中心目标:
要了解确保RAG在适当的精心策划的情况下切割适当目标的机制
(“偶联”)方式以及防止灾难性插入突变的机制
转座到基因组中。为了达到这一目标,我们将追求以下目标:
目的1.确定RAGL→RAG转变的进化、结构和生化基础。
我们将系统地剖析RAGL转座酶的活性和结构,并严格地
使用体外蛋白质生物化学测试我们的DNA限制和“开-关”开关模型的预测
一套体内切割和转座分析、冷冻电子显微镜和嵌合RAG酶
经过精心设计,具有被仔细干扰的DNA结合和切割活性。
目的2.确定RAG2在体内抑制RAG介导的转座的机制。
令人惊讶的是,RAG2和“缺失环节”的RAG2L蛋白都具有一个酸性铰链结构域,
抑制转座,导致我们提出RAG2L在进化早期作为一种抗毒素出现在
抑制RAG1L(转座酶“毒素”)的遗传毒性。我们将测定蛋白质残留量
以及调节酸性铰链和第二抑制区抑制活性的机制
在RAG2中,使用一系列生化重组和邻近标记方法的LF2F3环。
目的3.确定RAG过度激活/失控的生物学和基因组后果
细胞和老鼠。这一目标的目的是将机械理解与生物学结果联系起来。使用中
体内转座试验和携带突变RAG等位基因的小鼠,我们将回答两个突出的问题:
I)需要哪些RAG适配来抑制来自基因组某一位置的RAG介导的转座
对另一个人?二)对人的基因组、淋巴发育和肿瘤形成有什么影响
释放RAG介导的转位,还是解偶联和错误定位RAG的切割活性?
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David G. Schatz其他文献
Skewing the Playing Field: A Single-Molecule Study on how RSS Sequence Influences Gene Segment Selection
- DOI:
10.1016/j.bpj.2017.11.511 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Soichi Hirokawa;Nathan M. Belliveau;Geoffrey A. Lovely;Michael Anaya;David G. Schatz;David Baltimore;Rob Phillips - 通讯作者:
Rob Phillips
Developing B-cell theories
发展 B 细胞理论
- DOI:
10.1038/23134 - 发表时间:
1999-08-12 - 期刊:
- 影响因子:48.500
- 作者:
David G. Schatz - 通讯作者:
David G. Schatz
cDNA representational difference analysis: a sensitive and flexible method for identification of differentially expressed genes.
cDNA代表性差异分析:一种灵敏且灵活的差异表达基因鉴定方法。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael Hubank;David G. Schatz - 通讯作者:
David G. Schatz
Recombination centres and the orchestration of V(D)J recombination
重组中心与 V(D)J 重组的编排
- DOI:
10.1038/nri2941 - 发表时间:
2011-03-11 - 期刊:
- 影响因子:60.900
- 作者:
David G. Schatz;Yanhong Ji - 通讯作者:
Yanhong Ji
Transcription elongation factor ELOF1 is required for efficient somatic hypermutation and class switch recombination
转录延伸因子 ELOF1 对于有效的体细胞超突变和类别转换重组是必需的。
- DOI:
10.1016/j.molcel.2025.02.007 - 发表时间:
2025-04-03 - 期刊:
- 影响因子:16.600
- 作者:
Lizhen Wu;Anurupa Devi Yadavalli;Filip Senigl;Gabriel Matos-Rodrigues;Dijin Xu;Andreas P. Pintado-Urbanc;Matthew D. Simon;Wei Wu;André Nussenzweig;David G. Schatz - 通讯作者:
David G. Schatz
David G. Schatz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David G. Schatz', 18)}}的其他基金
FASEB's The Molecular Mechanisms of Immune Cell Development and Function Conference
FASEB 免疫细胞发育和功能的分子机制会议
- 批准号:
10224401 - 财政年份:2021
- 资助金额:
$ 62.48万 - 项目类别:
Genome Architecture in Human Germinal Center B Cell Development, Malignancy, and Somatic Hypermutation
人类生发中心 B 细胞发育、恶性肿瘤和体细胞超突变中的基因组结构
- 批准号:
10478178 - 财政年份:2020
- 资助金额:
$ 62.48万 - 项目类别:
Genome Architecture in Human Germinal Center B Cell Development, Malignancy, and Somatic Hypermutation
人类生发中心 B 细胞发育、恶性肿瘤和体细胞超突变中的基因组结构
- 批准号:
10706308 - 财政年份:2020
- 资助金额:
$ 62.48万 - 项目类别:
Genome Architecture in Human Germinal Center B Cell Development, Malignancy, and Somatic Hypermutation
人类生发中心 B 细胞发育、恶性肿瘤和体细胞超突变中的基因组结构
- 批准号:
10117444 - 财政年份:2020
- 资助金额:
$ 62.48万 - 项目类别:
Genome Architecture in Human Germinal Center B Cell Development, Malignancy, and Somatic Hypermutation
人类生发中心 B 细胞发育、恶性肿瘤和体细胞超突变中的基因组结构
- 批准号:
10264152 - 财政年份:2020
- 资助金额:
$ 62.48万 - 项目类别:
Function and Evolutionary Origins of the RAG Endonuclease
RAG 核酸内切酶的功能和进化起源
- 批准号:
10460993 - 财政年份:2018
- 资助金额:
$ 62.48万 - 项目类别:
Function and Evolutionary Origins of the RAG Endonuclease
RAG 核酸内切酶的功能和进化起源
- 批准号:
10231071 - 财政年份:2018
- 资助金额:
$ 62.48万 - 项目类别:
Targeting of somatic hypermutation in the genome
靶向基因组中的体细胞超突变
- 批准号:
10161714 - 财政年份:2017
- 资助金额:
$ 62.48万 - 项目类别:
Targeting of somatic hypermutation in the genome
靶向基因组中的体细胞超突变
- 批准号:
10642885 - 财政年份:2017
- 资助金额:
$ 62.48万 - 项目类别:
The role of AID/APOBEC3 proteins in genome instability in multiple myeloma
AID/APOBEC3 蛋白在多发性骨髓瘤基因组不稳定中的作用
- 批准号:
10165658 - 财政年份:2017
- 资助金额:
$ 62.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 62.48万 - 项目类别:
Research Grant














{{item.name}}会员




