The RCMI Program in Health Disparities at Meharry Medical College - Supplement

梅哈里医学院的 RCMI 健康差异项目 - 补充

基本信息

  • 批准号:
    10800382
  • 负责人:
  • 金额:
    $ 7.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-30 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Substance use disorders (SUDs) are a major public health issue that has recently more than doubled in prevalence among Americans in the last few years, from affecting 20 million in 2018 to 46.3 million Americans in 2021. Those affected by SUD disproportionately experience negative social determinants of health (SDoH), including inadequate access to safe housing, transportation, education, employment opportunities, and nutritious foods. These SDoH are connected with low self-esteem, self-efficacy, and failed attempts at SUD abstinence. Collecting and integrating SDoH information as part of patients’ electronic health records (EHR) for clinical modeling could help uncover patient experiences and behaviors related to SUD, but the majority of SDoH are embedded in unstructured free text. Additionally, the SUD diagnosis is under represented in structural EHR. Therefore, an automated and more accurate approach is needed to extract SDoH and identify SUDs. Natural language processing (NLP) can unlock the information conveyed in clinical narratives, thus playing a critical role in real-world studies. Methods and tools are being developed to facilitate such extractions; however, these tools are still under study for cohort-specific samples and unstructured text analytics is complex. To advance health disparity studies and improve understanding of patient characteristics of the SUD patients from the underserved population at Meharry, it is a high priority to explore machine learning tools to extract SDoH factors and identify SUDs diagnosis. In this proposal, we will address the challenge of SDoH extraction and SUDs identification from unstructured clinical notes or patient surveys to generate a consistent framework that can aid in identifying, understanding, treating, and predicting SUDs and associated outcomes (e.g. relapse). We will solve this challenge by developing two NLP pipelines, one for SDoH extraction and one for SUDs identification. We will focus on SUD patients with cocaine, cannabis, and opioid use disorders. The SDoH NLP pipeline will mine and enrich data in five SDoH domains defined by CDC including economic stability, education, health care access, neighborhood environment, and social and community context. Name entity recognition methods will be investigated in the SUDs NLP pipeline. We will develop and test the two pipelines in a cohort of 200-500 patients and compare our pipeline-derived results to manual review outcome to measure the NLP model performance. We hypothesize that a high performance SDoH NLP pipeline will be developed that will fit to our application, and more SUD patients will be identified. The ultimate goal of our studies is to identify patients at risk of SUDs, identify risk factors associated with health outcomes, and improve patient health outcome prediction that will potentially help clinical decision support and healthcare management. In order to accomplish this, we will integrate the SDoH associated factors and SUD diagnosis that we obtained from the two NLP pipelines, along with other phenotype risk factors being extracted from EHR structured data. We hypothesize that the performance of the SUD predictive model will be increased after SDoH are included.
项目总结 物质使用障碍(Suds)是一个重大的公共卫生问题,最近在 过去几年在美国人中的流行率,从2018年的2000万人影响到4630万人 在2021年。受SUD影响的人不成比例地经历了负面的健康社会决定因素(SDoH), 包括缺乏获得安全住房、交通、教育、就业机会和营养的机会 食物。这些SDoH与低自尊、自我效能感和尝试SUD禁欲的失败有关。 收集和整合SDoH信息作为患者电子健康记录(EHR)的一部分供临床使用 建模可以帮助揭示与SUD相关的患者经历和行为,但大多数SDoH是 嵌入在非结构化自由文本中。此外,结构性EHR中对SUD的诊断不足。 因此,需要一种自动化和更准确的方法来提取SDoH和识别SUD。天然 语言处理(NLP)可以解锁临床叙述中所传达的信息,因此起着至关重要的作用 在现实世界的研究中。正在开发方法和工具来促进这种提取;然而,这些工具 仍在研究特定于队列的样本,非结构化文本分析很复杂。增进健康 差异研究和提高对服务不足的SUD患者的患者特征的理解 在Meharry,探索机器学习工具来提取SDoH因素并识别 肥皂泡诊断。在本提案中,我们将解决SDoH提取和SoDS识别的挑战 从非结构化的临床记录或患者调查中生成一致的框架,以帮助 识别、了解、治疗和预测肥胖症及相关结果(例如复发)。我们 将通过开发两条NLP管道来解决这一挑战,一条用于SDoH提取,另一条用于SODS 身份证明。我们将重点关注有可卡因、大麻和阿片类药物使用障碍的SUD患者。SDoH NLP 管道将挖掘和丰富CDC定义的五个SDoH领域的数据,包括经济稳定、教育、 卫生保健可获得性、邻里环境以及社会和社区背景。名称实体识别 这些方法将在SODS NLP管道中进行调查。我们将在一个队列中开发和测试这两条管道 200-500名患者,并将我们的管道得出的结果与手动审查结果进行比较,以衡量NLP模型 性能。我们假设将开发一种高性能的SDoH NLP管道,该管道将适合我们的 应用,将识别更多的SUD患者。我们研究的最终目标是在 肥胖症的风险,确定与健康结果相关的风险因素,并改善患者的健康结果 这一预测可能有助于临床决策支持和医疗保健管理。为了完成 这,我们将结合SDoH相关因素和我们从两个NLP获得的SUD诊断 管道,以及从EHR结构化数据中提取的其他表型风险因素。我们假设 加入SDoH后,SUD预测模型的性能将得到提高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Evans Adunyah其他文献

Samuel Evans Adunyah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Evans Adunyah', 18)}}的其他基金

Admin Core
管理核心
  • 批准号:
    10889326
  • 财政年份:
    2023
  • 资助金额:
    $ 7.28万
  • 项目类别:
MMC, VICC & TSU: Partners in Eliminating Cancer Disparities ( 1 of 3)
MMC、VICC
  • 批准号:
    8534727
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
MMC, VICC & TSU: Partners in Eliminating Cancer Disparities (1 of 3)
MMC、VICC
  • 批准号:
    9356457
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
MMC, VICC & TSU: Partners in Eliminating Cancer Disparities (1 of 3)
MMC、VICC
  • 批准号:
    10012757
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
MMC, VICC & TSU: Partners in Eliminating Cancer Disparities (1 of 3)
MMC、VICC
  • 批准号:
    9211638
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
1/3) MMC, VICC, and TSU: Partners in Eliminating Cancer Disparities
1/3) MMC、VICC 和 TSU:消除癌症差异的合作伙伴
  • 批准号:
    10493417
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
Education and Training Core
教育培训核心
  • 批准号:
    10493432
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
Education and Training Core
教育培训核心
  • 批准号:
    10327937
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
Administration Core
行政核心
  • 批准号:
    8261507
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:
MMC, VICC & TSU: Partners in Eliminating Cancer Disparities (1 of 3)
MMC、VICC
  • 批准号:
    9765041
  • 财政年份:
    2011
  • 资助金额:
    $ 7.28万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.28万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了