Spatiotemporal regulation of collective cell behaviors in Drosophila

果蝇集体细胞行为的时空调控

基本信息

项目摘要

Normal tissue development and tumor metastasis require extensive cell movements, and border cell migration in the Drosophila ovary provides a powerful in vivo model. Border cells migrate as a group of two different cell types, a pair of non-migratory polar cells in the center that recruit 6-8 epithelial cells to surround and carry them between nurse cells to the developing oocyte, in a structure called an egg chamber. Using this system, we first discovered the in vivo role of the 21kD GTPase Rac in protrusion and migration, then showed that photoactivation of Rac in one cell could steer the entire cluster. For more than two decades though, we were puzzled that expression of constitutively active Rac in border cells seemed to destroy the entire egg chamber. During the current funding period, we solved this longstanding mystery. We discovered that border cells expressing active Rac kill the nurse cells. Anterior follicle cells normally engulf and kill nurse cells late in oogenesis, and we propose that active Rac prematurely activates this program. A similar mechanism may explain otherwise mysterious immune deficiencies in human patients. Here we propose to continue our exciting investigation of the spatiotemporal control of Rac-mediated cell migration and engulfment in Drosophila. In Aim 1 we propose to elucidate the mechanisms of Rac-mediated cell killing. Taking advantage of the border cell model, we will test the functional effects of each of the known activating Rac mutations that cause immunodeficiencies in patients. We will test the hypothesis that border cells expressing active Rac prematurely activate the normal developmental killing program, and we will define more precisely the role of Rac within the molecular pathway. We will investigate how just six cells can destroy an entire egg chamber, and we will identify the chemical, physical, and adhesive properties that govern target cell selection. In Aim 2, we propose to follow up on our discovery that a basally localized Rac activator is required for border cell cluster cohesion and migration. We will elucidate its relationship to basolateral complex proteins and test whether its primary function is to localize Rac activity to basal surfaces. We will test the hypothesis that basal Rac activity is required to generate basal protrusions that in turn coordinate collective cell behavior. In Aim 3, we will follow up on a screen in which we have identified Rho family activators and inhibitors required in border cells. We propose that border cells require elaborate spatiotemporal control of Rac due to their needs to: maintain apicobasal polarity despite being detached from basement membrane, extend and retract forward-directed protrusions, maintain cohesion under strain, and inhibit inappropriate protrusion. Our ultimate goal is the decipher the Rac regulatory network.
正常组织发育和肿瘤转移需要广泛的细胞运动,并且边缘细胞 果蝇卵巢中的迁移提供了强有力的体内模型。边缘细胞以两个为一组迁移 不同的细胞类型,一对非迁移性极细胞在中心,招募6-8上皮细胞包围 并将它们在滋养细胞之间运送到发育中的卵母细胞,在一个称为卵室的结构中。使用 在这个系统中,我们首先发现了21 kD GTdR ac在体内突起和迁移中的作用, 表明一个细胞中Rac的光活化可以控制整个簇。二十多年来 然而,我们感到困惑的是,边缘细胞中组成型活性Rac的表达似乎破坏了细胞的功能。 整个卵室。在目前的融资期间,我们解决了这个长期存在的谜团。我们发现 表达活性Rac的边缘细胞杀死了滋养细胞。前卵泡细胞通常吞噬和杀死护士 细胞在卵子发生后期,我们提出,活跃的Rac过早地激活了这个程序。类似的 这一机制可以解释人类患者神秘的免疫缺陷。在此,我们建议 继续我们令人兴奋的Rac介导的细胞迁移的时空控制研究, 吞噬果蝇在目的1中,我们提出阐明Rac介导的细胞杀伤机制。 利用边界细胞模型,我们将测试每个已知的激活的功能效应。 导致患者免疫缺陷的Rac突变。我们将检验边缘细胞 表达活性Rac过早激活正常的发育杀伤程序,我们将定义 更确切地说,Rac在分子途径中的作用。我们将研究六个细胞如何 破坏整个卵室,我们将确定化学,物理和粘合剂特性, 控制目标细胞的选择。在目标2中,我们建议跟进我们的发现,即基底局部化的Rac 激活剂是边界细胞簇凝聚和迁移所必需的。我们将阐明它与 基底外侧复合物蛋白,并测试其主要功能是否是将Rac活性定位于基底 表面。我们将检验这样的假设,即基底Rac活性是产生基底突起所必需的, 转动协调集体细胞行为。在目标3中,我们将跟进一个屏幕, 边缘细胞所需的Rho家族激活剂和抑制剂。我们建议边界细胞需要精心设计 Rac的时空控制,因为它们需要:尽管分离,但仍保持顶基极性 从基底膜,延伸和缩回向前的突起,在应变下保持凝聚力, 并抑制不适当的突出。我们的最终目标是破译Rac监管网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denise J. Montell其他文献

Septins regulate border cell surface geometry, shape, and motility downstream of Rho in emDrosophila/em
在果蝇胚胎中,隔离蛋白在 Rho 下游调控边界细胞表面的几何形状、形状和运动性。
  • DOI:
    10.1016/j.devcel.2023.05.017
  • 发表时间:
    2023-08-07
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Allison M. Gabbert;Joseph P. Campanale;James A. Mondo;Noah P. Mitchell;Adele Myers;Sebastian J. Streichan;Nina Miolane;Denise J. Montell
  • 通讯作者:
    Denise J. Montell
Border-cell migration: the race is on
边缘细胞迁移:竞赛正在进行
Editorial: Special issue SCDB "Cell death and survival": Cell death and resilience in health and disease.
社论:SCDB 特刊“细胞死亡与生存”:健康和疾病中的细胞死亡与恢复力。
Apoptotic signaling: Beyond cell death
凋亡信号传导:超越细胞死亡
  • DOI:
    10.1016/j.semcdb.2023.11.002
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Maddalena Nano;Denise J. Montell
  • 通讯作者:
    Denise J. Montell
Ovarian Cancer Metastasis: Integrating insights from disparate model organisms
卵巢癌转移:整合来自不同模式生物的见解
  • DOI:
    10.1038/nrc1611
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
    66.800
  • 作者:
    Honami Naora;Denise J. Montell
  • 通讯作者:
    Denise J. Montell

Denise J. Montell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denise J. Montell', 18)}}的其他基金

Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    9803243
  • 财政年份:
    2019
  • 资助金额:
    $ 1.94万
  • 项目类别:
Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    10399509
  • 财政年份:
    2019
  • 资助金额:
    $ 1.94万
  • 项目类别:
Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    10625313
  • 财政年份:
    2019
  • 资助金额:
    $ 1.94万
  • 项目类别:
2015 Directed Cell Migration Gordon Research Conference & Gordon Research Seminar
2015年定向细胞迁移戈登研究会议
  • 批准号:
    8837312
  • 财政年份:
    2015
  • 资助金额:
    $ 1.94万
  • 项目类别:
Anastasis, a new mechanism driving cell survival and evolution
Anastasis,驱动细胞生存和进化的新机制
  • 批准号:
    8932673
  • 财政年份:
    2014
  • 资助金额:
    $ 1.94万
  • 项目类别:
Anastasis, a new mechanism driving cell survival and evolution
Anastasis,驱动细胞生存和进化的新机制
  • 批准号:
    9099812
  • 财政年份:
    2014
  • 资助金额:
    $ 1.94万
  • 项目类别:
Anastasis, a new mechanism driving cell survival and evolution
Anastasis,驱动细胞生存和进化的新机制
  • 批准号:
    8750779
  • 财政年份:
    2014
  • 资助金额:
    $ 1.94万
  • 项目类别:
Reversal of apoptosis:an in vivo mechanism for cytoprotection and mutagenesis
细胞凋亡的逆转:细胞保护和诱变的体内机制
  • 批准号:
    8720004
  • 财政年份:
    2013
  • 资助金额:
    $ 1.94万
  • 项目类别:
Reversal of apoptosis:an in vivo mechanism for cytoprotection and mutagenesis
细胞凋亡的逆转:细胞保护和诱变的体内机制
  • 批准号:
    8589289
  • 财政年份:
    2013
  • 资助金额:
    $ 1.94万
  • 项目类别:
Regulation of Cell Migration in Development
发育过程中细胞迁移的调控
  • 批准号:
    7929984
  • 财政年份:
    2009
  • 资助金额:
    $ 1.94万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了