TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
基本信息
- 批准号:10013134
- 负责人:
- 金额:$ 158.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-22 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAlgorithmsAreaBig DataBiologyCancer BiologyCharacteristicsClinicalClinical TrialsCollaborationsCollectionCommunitiesComputer softwareCoupledDataData CollectionData SetDiagnostic ImagingDiseaseEnsureFosteringFundingGoalsImageIndividualInformation ResourcesMalignant NeoplasmsManualsMedical ResearchMorphologic artifactsNational Research CouncilPathologyPatientsPhenotypePlayPredispositionProcessPublicationsReproducibilityResearchResource InformaticsResourcesSemanticsTargeted ResearchTechniquesTechnologyTestingThe Cancer Imaging ArchiveTrainingTranslational ResearchUnited States National Institutes of HealthValidationVisualanticancer researchbasecancer imagingcancer therapycohortcostdata explorationdata formatdata resourcedata reusedata sharingexperienceimage archival systemimaging informaticsimprovedindividual variationindividualized medicineinnovationinterestknowledge basemeetingsmultimodalitynew technologyopen dataoperationoutcome forecastpathology imagingprecision medicineprecision oncologyquantitative imagingradiological imagingradiomicsrepositoryresearch studyresource guidesresponsetooltreatment planningvalidation studieswiki
项目摘要
Project Summary
The National Research Council has defined Precision Medicine as “the tailoring of medical treatments to
individual characteristics of each patient.” This requires the ability to classify patients into specialized cohorts
that differ in their susceptibility to a particular disease, in the biology and/or prognosis of the diseases they may
develop, or in their response to a specific treatment. Identifying quantitative imaging phenotypes across scale
through the use of radiomic/pathomic analyses is an evolving approach to cohort identification and to improving
our understanding of cancer biology. These analytic techniques require large collections of well-curated data for
algorithm testing and validation. Additional big data collections are required to test new hypotheses relating to
cancer biology, prognosis and therapy response. Since 2011 the Cancer Imaging Archive (TCIA) has
encouraged and supported cancer-related open science research by acquiring, curating, hosting and managing
collections of multi-modal information. To remain relevant to its current research community and ready to support
future research initiatives TCIA must undergo continuous improvement and expansion of it capabilities guided
by the research community. The TCIA user community has identified four critical areas for improvement:
expanded resources for integrative Image-Omics studies, enhanced capacity to acquire high quality data
collections, resources to support validation studies and Research Reproducibility, and increased community
engagement. The sustainment of TCIA and research community directed expansion of its capabilities will ensure
this valuable resource continues to support its rapidly growing user community and continue to promote research
reproducibility and data reuse in cancer precision medical research.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Imon Banerjee其他文献
Imon Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Imon Banerjee', 18)}}的其他基金
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
- 批准号:
10816667 - 财政年份:2023
- 资助金额:
$ 158.49万 - 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10420233 - 财政年份:2022
- 资助金额:
$ 158.49万 - 项目类别:
Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients
灵活的 NLP 工具包,用于自动治疗乳腺癌患者的结果
- 批准号:
10675009 - 财政年份:2022
- 资助金额:
$ 158.49万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
10227670 - 财政年份:2017
- 资助金额:
$ 158.49万 - 项目类别:
TCIA Sustainment and Scalability - Platforms for Quantitative Imaging Informatics in Precision Medicine
TCIA 持续性和可扩展性 - 精准医学中的定量成像信息学平台
- 批准号:
9753190 - 财政年份:2017
- 资助金额:
$ 158.49万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 158.49万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 158.49万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 158.49万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 158.49万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 158.49万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 158.49万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 158.49万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 158.49万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 158.49万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 158.49万 - 项目类别:
Standard Grant