Microenvironmental characterization and manipulation to prevent secondary caries
预防继发龋的微环境特征和操作
基本信息
- 批准号:10814030
- 负责人:
- 金额:$ 54.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-05 至 2025-07-04
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAdoptedAlamarBlueAttentionBacteriaBehaviorBiologicalBiological AssayBuffersCellsChemicalsClinicalComplexComposite ResinsConfocal MicroscopyCoupledDataDentalDental MaterialsDental PlaqueDental PulpDental cariesDevelopmentDevicesDiffusionEffectivenessEnvironmentExcisionExposure toFailureFillerFormulationFoundationsFutureGlassGrowthHardnessHealthHumanHydrogen PeroxideIn VitroIonsKineticsLactic acidLifeLongevityMeasurableMeasurementMeasuresMetabolicMetalsMicrobial BiofilmsMicroscopicMicroscopyModelingNutrientOral cavityOregonPerformancePersonsPlant ResinsPopulationPredispositionRecurrenceReproducibilityResearchResolutionRoot CariesSalivaScanningScienceServicesSpecimenSurfaceTechniquesTestingTimeTooth DemineralizationTooth structureUndifferentiatedUnited States National Institutes of HealthUniversitiesWidthantimicrobialbiomaterial compatibilityclinically relevantcomposite restorationcytotoxicitydesigndivalent metaleffectiveness evaluationeffectiveness testingelectric impedancefundamental researchhuman subjectimprovedin vitro Modelin vivoin vivo evaluationinnovationinterfacialmetermicrobialmicrobial colonizationmicrobiomemicrobiome alterationmicrosensornoveloral biofilmoral microbiomeorganic acidpolymicrobial biofilmpreventrestorationrestorative dentistryrestorative materialsensorvolunteer
项目摘要
A common reason cited for dental composite replacement is the recurrence of caries around existing restorations
due to microbial activity. Treatment typically involves the removal of decayed tooth structure and placement of a
new restoration. Since the microbial environment remains the same, the new tooth-restoration complex may also
be susceptible to failure. Thus, the problem is not adequately addressed in current dental treatment approaches.
More innovative materials are required that can purposefully bias the microbial environment toward improved
health. Our preliminary data demonstrate that Mg2+ or Zn2+ released from bioactive glass (BAG)-containing resin
composites can support a healthy microbial environment, thus directly addressing the root of the caries problem.
Here we propose a new strategy involving Mg2+-and Zn2+-releasing dental composites that can favorably alter
the microbiome on and around dental restorations such that the local pH >5.5.
AIM 1: Optimize Mg2+- and Zn2+-releasing bioactive glass (BAG)-containing dental composites for long-term
support of a healthy oral microbiome. Scanning electrochemical microscopy (SECM) will be used to optimize pH
dependent Mg2+ and Zn2+ release kinetics from different Mg- and Zn-BAG formulations. Later, dental plaque
derived multi species biofilm growth rate, volume, species composition and pH at the BAG surface will be
quantified and optimized such that local pH > 5.5. AIM 2: Test the effectiveness of new Mg-BAG and Zn-BAG
composites in an in vitro secondary caries model. Placement of a restoration has the inherent challenge of gap
formation between the dental material and the tooth structure. Currently, little information is available on how
bacteria behave in microgaps. For example, microbial colonization, diffusion rates, and organic acid metabolites
may be very different within gaps as compared to exposed surfaces in the oral cavity, potentially leading to
enhanced tooth decay at the interface. Here we will develop an in vitro microgap model using the electrochemical
sensors techniques to measure the biological activity and the effect on the microbial population in these
microenvironments such that local pH > 5.5. AIM 3: In vivo evaluation of Mg-BAG and Zn-BAG composites with
intraoral appliances. The cytotoxicity of Mg-BAG and Zn-BAG will be tested using undifferentiated dental pulp
cells compared to standard dental composites. The in vitro optimized Mg-BAG and Zn-BAG composites that are
shown to have equal or lower cytotoxicity than typical composite will be placed in intraoral appliances to be
tested in volunteers. This real-life scenario will evaluate the effectiveness of the composites when all biologically
relevant parameters are present that potentially interfere with the performance of Mg-BAG and Zn-BAG
composites. This will also provide a direct comparison between the in vitro model and the clinical situation.
Our proposal will lay the foundation for further metal ions driven research on biofilm growth and behavior, as well
as for the development of a more realistic in vitro secondary caries model that includes chemical
microenvironments created by differential biofilm metabolic activities within microscopic gaps.
一个常见的原因引用的牙科复合材料更换是复发的龋齿周围现有的牙列
由于微生物的活动。治疗通常包括去除蛀牙结构和放置一个
新的恢复。由于微生物环境保持不变,新的牙齿修复复合物也可能
容易失败。因此,该问题在当前的牙科治疗方法中没有得到充分解决。
需要更多的创新材料,这些材料可以有目的地使微生物环境偏向于改善
健康我们的初步数据表明,Mg ~(2+)或Zn ~(2+)从生物活性玻璃(BAG)树脂中释放出来,
复合材料可以支持健康的微生物环境,从而直接解决龋齿问题的根源。
在这里,我们提出了一种新的策略,涉及Mg 2+和Zn 2+释放牙科复合材料,可以有利地改变
在牙齿周围的微生物组,使局部pH >5.5。
目的1:优化含Mg 2+和Zn 2+释放生物活性玻璃(BAG)的牙科复合材料,
支持健康的口腔微生物组。将使用扫描电化学显微镜(SECM)优化pH值
不同Mg-和Zn-BAG制剂的依赖性Mg 2+和Zn 2+释放动力学。后来,牙菌斑
在BAG表面的衍生的多物种生物膜生长速率、体积、物种组成和pH将是
定量并优化,使得局部pH > 5.5。目的2:测试新的Mg-BAG和Zn-BAG的有效性
复合材料在体外继发性龋齿模型中的作用。修复体的放置具有间隙的固有挑战
在牙齿材料和牙齿结构之间的形成。目前,关于如何做到这一点,
细菌在微间隙中活动。例如,微生物定植、扩散速率和有机酸代谢产物
与口腔中的暴露表面相比,
界面处的蛀牙加剧。在这里,我们将开发一个体外微间隙模型,使用电化学
传感器技术来测量生物活性和对这些微生物种群的影响,
微环境,使局部pH > 5.5。目的3:体内评价Mg-BAG和Zn-BAG复合材料,
口内器具将使用未分化的牙髓测试Mg-BAG和Zn-BAG的细胞毒性
与标准牙科复合材料相比。体外优化的Mg-BAG和Zn-BAG复合材料,
具有与典型复合材料相同或更低的细胞毒性的复合材料将被放置在口内器具中,
在志愿者中测试。这个真实的场景将评估复合材料的有效性,
存在可能干扰Mg-BAG和Zn-BAG性能的相关参数
复合材料.这也将提供体外模型和临床情况之间的直接比较。
我们的建议将奠定基础,进一步金属离子驱动的生物膜生长和行为的研究,以及
至于开发一种更真实的体外继发性龋齿模型,
微环境由微间隙内的差异生物膜代谢活动产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipankar Koley其他文献
Dipankar Koley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipankar Koley', 18)}}的其他基金
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
9750683 - 财政年份:2018
- 资助金额:
$ 54.24万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
9580833 - 财政年份:2018
- 资助金额:
$ 54.24万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
10441300 - 财政年份:2018
- 资助金额:
$ 54.24万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
10208857 - 财政年份:2018
- 资助金额:
$ 54.24万 - 项目类别:
Going Local: Probing Real-Time Chemical Exchange Between Biofilm and Dental Composites
走向本地:探索生物膜和牙科复合材料之间的实时化学交换
- 批准号:
9098689 - 财政年份:2015
- 资助金额:
$ 54.24万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 54.24万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 54.24万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 54.24万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 54.24万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 54.24万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 54.24万 - 项目类别: