Going Local: Probing Real-Time Chemical Exchange Between Biofilm and Dental Composites
走向本地:探索生物膜和牙科复合材料之间的实时化学交换
基本信息
- 批准号:9098689
- 负责人:
- 金额:$ 21.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:Artificial SalivaBacteriaBacterial AdhesinsBacterial GenesBiological ModelsBiologyBuffersCalciumCalcium ionCellsChemicalsChemistryDataDentalDental MaterialsDental cariesDentistryDevelopmentEnvironmentEquilibriumFormulationGene ExpressionGene Expression ProfilingGenesGeneticGlassGoalsGrowthHarvestHealthHumanIndividualIonsKineticsKnowledgeLactic acidLeadLearningLesionLongevityMapsMeasurementMeasuresMetabolicMetabolismMetalsMicrobial BiofilmsMicroscopyMissionModelingOral healthOutputOxidation-ReductionPositioning AttributePropertyRecurrenceResearchResolutionRoleScanningServicesSpatial DistributionStreptococcus mutansSurfaceSystemTechniquesTestingTimeTooth structureUnited States National Institutes of HealthVeillonella parvulaVirulencebasebiomaterial interfacecomposite restorationdemineralizationdesignexperienceimprovedinnovationmaterials sciencemicrosensormultidisciplinarynext generationoral bacteriaoral biofilmpreventresponserestorationrestorative dentistryrestorative materialsensortool
项目摘要
DESCRIPTION (provided by applicant): Composites are widely used in restorative dentistry, but significant deficiencies in the composite longevity still exist. The majority of dental composie restorations are estimated to fail within the first 10 years of service, mainly due to the formatio of bacterial biofilm-induced caries at the tooth-material interface. Therefore, to develop longer lasting dental restorative materials, it is essential to understand the fundamental chemistry and biology at the interface of the composites and the oral biofilm. Currently, the analytical techniques to study this interface at a sufficiently high spatial resolution to measure bacterial metabolic activity do not exist. Hence, the overall objective of this proposed study is to determine the effects of metal ion (i.e. calcium) release from dental composites on the biofilm growth, metabolism and gene expression. Bioactive glass-containing dental composites that release calcium ions as well as neutralize pH will be used as a model biofilm growth substrate. The central hypotheses are to test whether varying amounts of calcium ions have any significant effect on the biofilm growth and determine whether the metal ions have any differential growth effects on lactate-producing Streptococcus mutans (Sm) and lactate-consuming Veillonella parvula (Vp), such that the overall local pH is equal or greater than 5.5 to prevent demineralization of adjacent tooth structures. We will approach our hypothesis with the following specific aims: We will fabricate ultramicro-sensors for pH, calcium ions and lactate (Specific aim 1). Then, these microsensors will be assessed for use as a scanning electrochemical microscopy (SECM) probe to quantitatively map the chemical microenvironment above dental composites containing bioactive glass, with and without growing bacteria biofilm (s) (Sm and Vp). This innovative technique will help to quantify the local lactate concentration and the resultant overall local pH in the presence of Sm and Vp while exposed to varying amounts of calcium ions released from the composites. This information will ultimately lead to the design of new dental materials with optimal ion releasing property such that the overall local pH remains at 5.5 or higher (Specific aim 2). Finally, SECM mapping data will be used to determine the interdependence of different composites formulations, the real-time redox environment and polymicrobial biofilm gene expression (Specific aim 3). The proposed research is a significant step towards predicting the next-generation "smart" dental composites, which will be able to deter the growth of acidogenic biofilms and to maintain a balance in the local pH and ultimately increase the lifespan of dental composite restorations.
描述(由适用提供):复合材料被广泛用于修复牙科,但复合寿命中的明显缺陷仍然存在。据估计,大多数牙科复合修复体估计在服务的前10年内失败,这主要是由于细菌生物膜诱导的牙齿材料携带的形式。因此,要开发更长的持久牙齿修复材料,必须了解组成和口服生物膜的界面上的基本化学和生物学。当前,不存在以足够高的空间分辨率研究该界面以测量细菌代谢活性的分析技术。因此,这项拟议的研究的总体目的是确定牙科复合材料对生物膜生长,代谢和基因表达的释放的金属离子(即钙)释放的影响。释放钙离子和中和pH的含有生物活性玻璃的牙科复合材料将用作模型生物膜生长底物。中心假设是测试不同量的钙离子是否对生物膜的生长有任何显着影响,并确定金属离子对产生裂缝的链球菌突变(SM)和消耗的Veillonella parvula parvula(VP)是否具有不同的生长作用,从而使局部pH值等于或更大。我们将以以下特定目的来解决我们的假设:我们将针对pH,钙离子和裂缝构建超大型传感器(特定目标1)。然后,将评估这些微传感器作为扫描电化学显微镜(SECM)探针,以定量地绘制包含生物活性玻璃的牙齿成分上方的化学微环境,具有和没有生长的细菌生物膜(S)(SM和VP)。这种创新的技术将有助于量化局部乳酸浓度以及在存在SM和VP的情况下所致的总体局部pH,同时暴露于从组成中释放的钙离子数量不同。该信息最终将导致具有最佳离子释放属性的新牙科材料的设计,从而使整个局部pH保持在5.5或更高(特定的AIM 2)。最后,SECM映射数据将用于确定不同组成配方,实时氧化还原环境和多菌粒生物膜基因表达的相互依赖性(特定目标3)。拟议的研究是预测下一代“智能”牙齿组成的重要一步,该组合物将能够确定酸性生物膜的生长,并在局部pH中保持平衡,并最终增加牙科复合修复的寿命。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipankar Koley其他文献
Dipankar Koley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dipankar Koley', 18)}}的其他基金
Microenvironmental characterization and manipulation to prevent secondary caries
预防继发龋的微环境特征和操作
- 批准号:
10814030 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
9750683 - 财政年份:2018
- 资助金额:
$ 21.66万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
9580833 - 财政年份:2018
- 资助金额:
$ 21.66万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
10441300 - 财政年份:2018
- 资助金额:
$ 21.66万 - 项目类别:
Manipulation of Bacterial Metabolism: A New Approach to Develop Smart Dental Composites
操纵细菌代谢:开发智能牙科复合材料的新方法
- 批准号:
10208857 - 财政年份:2018
- 资助金额:
$ 21.66万 - 项目类别:
相似国自然基金
利用超分辨显微镜研究整合素介导的细菌粘附机制
- 批准号:22107099
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
利用超分辨显微镜研究整合素介导的细菌粘附机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向细菌粘附素FimH的近红外分子探针的构建及其细菌诊疗一体化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向细菌粘附素FimH的近红外分子探针的构建及其细菌诊疗一体化研究
- 批准号:22107123
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
靶向细菌自转运粘附素中庚糖基化修饰的单克隆抗体的制备
- 批准号:21807112
- 批准年份:2018
- 资助金额:24.2 万元
- 项目类别:青年科学基金项目
相似海外基金
Determinants of polymicrobial diabetic wound infections
多种微生物糖尿病伤口感染的决定因素
- 批准号:
10665269 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
Mechanisms of Group B Streptococcal Pathogenesis in the Diabetic Wound
糖尿病伤口中 B 族链球菌的发病机制
- 批准号:
10676441 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
A novel vaccination strategy to curb recUTIs
遏制复发尿路感染的新型疫苗接种策略
- 批准号:
10665990 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别:
FimH-Targeting Antibody-Recruiting Molecules as Novel Drugs for Preventing Complicated Urinary Tract Infections
FimH 靶向抗体招募分子作为预防复杂性尿路感染的新药
- 批准号:
10603693 - 财政年份:2023
- 资助金额:
$ 21.66万 - 项目类别: