Developing a Temporally-Regulated Gene Therapy for Therapeutic Angiogenesis
开发用于治疗性血管生成的时间调控基因疗法
基本信息
- 批准号:10832458
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-09-29
- 项目状态:已结题
- 来源:
- 关键词:AffectAlternative TherapiesAngiogenic FactorAngioplastyArteriesBehaviorBiocompatible MaterialsBiologicalBlood VesselsBlood flowBostonBypassCardiovascular DiseasesCause of DeathCell TherapyCell secretionCellsCessation of lifeChronicClinicClinical TrialsComplexDevelopmentDoseEndothelial CellsEngineeringEventGene DeliveryGene ExpressionGene Expression RegulationGenerationsGenesGeneticGrantGrowthGrowth FactorHalf-LifeHealthHindlimbHypoxiaHypoxia Inducible FactorImmunotherapyImpairmentIn VitroIschemiaMaturation-Promoting FactorMeasuresMentorsModelingMolecularOperative Surgical ProceduresOxygenPatientsPerfusionPersonsProcessProliferatingQuality of lifeRecombinant ProteinsRecoveryRegenerative MedicineResponse ElementsRoleSignal TransductionSiteStrokeSwitch GenesTestingTissue EngineeringTissuesTrainingTranscriptional RegulationTranslatingTubeUniversitiesVascular blood supplyVascularizationWritingangiogenesiscareercellular engineeringcollaborative environmentcomorbiditycostdesigndisabilityexperiencegene therapygenetic elementgenetically modified cellsimprovedin vitro Modelin vivoin vivo Modelinsightinterestischemic cardiomyopathymigrationnext generationnoveloverexpressionparacrinepatient subsetsrecruitself organizationsensorskillsstem cellssuccesssymposiumsynthetic biologytherapeutic angiogenesistool
项目摘要
Project Summary/Abstract
Cardiovascular diseases affect millions of patients worldwide and account for nearly a third of deaths globally.
Ischemia, or a reduced blood supply, occurs in many cardiovascular diseases and is a pressing health challenge.
While current treatments primarily focus on re-vascularization of existing blood vessels, a significant sub-
population of patients are unable to tolerate the associated surgical procedures due to existing comorbidities.
Thus, there is great interest in developing strategies for therapeutic angiogenesis, which seeks to stimulate new
vascularization at the ischemic site. While many gene and cell therapies for therapeutic angiogenesis have been
tested in clinical trials, a clear benefit for patients remains to be seen. To date, most gene therapies deliver one
or two genes to the ischemic site, while cell therapies deliver progenitor or stem cells to produce paracrine factors
and self-organize into vasculature. A central limitation of these therapies is the inability to control the
temporal presentation of the expressed genes or secreted factors. Angiogenesis is a complex and
temporally regulated process, in which angiogenic factors first initiate the formation of a primitive vascular
network before maturation factors promote mural cell recruit and vessel stabilization. While studies with growth
factors suggest that sequential delivery of angiogenic and maturation factors is beneficial for establishing
functional vasculature, how the timing of the angiogenic-to-maturation transition impacts the functionality of the
established vasculature is unknown. How tissues naturally sense the correct timing for the angiogenic-to-
maturation transition is also unclear, but incorporating a sensor to regulate the expression of angiogenic and
maturation genes would be beneficial for creating a gene therapy with controlled dosing and minimal off-target
effects. In this proposal, synthetic biology tools will be combined with engineered models of vascularization and
an in vivo model of hindlimb ischemia to evaluate how the timing of angiogenic and maturation gene expression
impacts functional vascular network formation and recovery from ischemia. In Aim 1, a two-channel genetic
switch will be used to establish the relationship between the timing of the angiogenic-to-maturation transition and
vascular network functionality. In Aim 2, hypoxia response elements will be used to generate a hypoxia-regulated
genetic switch to control the induction of angiogenic and maturation genes. The genetic switch will be evaluated
for its ability to rescue perfusion in an in vivo hindlimb ischemia model. The associated training plan will prepare
the fellow for an academic career by enabling the fellow to obtain new skillsets in synthetic biology and in vivo
models. The fellow will have many opportunities for professional development through mentoring, networking,
attending conferences, and experience with grant writing. The fellow will train in the Biological Design Center at
Boston University, which holds extensive expertise in molecular, cellular, and tissue engineering and presents
an interdisciplinary and collaborative environment for the fellow to develop scientifically and professionally.
项目摘要/摘要
心血管疾病影响着全球数百万患者,占全球死亡人数的近三分之一。
缺血,或血液供应减少,发生在许多心血管疾病中,是一个紧迫的健康挑战。
虽然目前的治疗主要集中在现有血管的再血管化上,但一个重要的亚
由于存在合并症,许多患者无法耐受相关的外科手术。
因此,人们对开发治疗性血管生成策略非常感兴趣,该策略寻求刺激新的
缺血部位的血管形成。虽然许多用于治疗性血管生成的基因和细胞疗法已经
在临床试验中进行了测试,对患者是否有明显的好处仍有待观察。到目前为止,大多数基因疗法都能提供一种
或两个基因到缺血部位,而细胞疗法输送祖细胞或干细胞来产生旁分泌因子
并自组织成血管系统。这些疗法的一个主要局限性是无法控制
表达的基因或分泌因子的时间呈现。血管生成是一个复杂的过程
时间调节的过程,其中血管生成因子首先启动原始血管的形成
成熟前的网络因子促进壁细胞的募集和血管的稳定。在学习与成长的同时
因素表明,血管生成和成熟因子的顺序递送有利于建立
功能血管系统,血管生成向成熟转变的时机如何影响血管功能
已建立的血管系统尚不清楚。组织如何自然地感觉到血管生成到-
成熟转变也不清楚,但结合了一个传感器来调节血管生成和
成熟基因将有益于创造一种可控剂量和最小偏离靶点的基因疗法
效果。在这项提案中,合成生物学工具将与血管形成和工程模型相结合
评价血管生成和成熟基因表达时机的后肢缺血体内模型
影响功能性血管网络的形成和从缺血中恢复。在目标1中,一个双通道基因
Switch将用于建立血管生成向成熟转变的时间与
血管网络功能。在目标2中,低氧反应元件将被用来产生低氧调节的
基因开关控制血管生成和成熟基因的诱导。将对遗传开关进行评估
在活体肢体缺血模型中恢复灌流的能力。相关的培训计划将准备
通过使研究员获得合成生物学和体内的新技能,使其成为学术生涯的研究员
模特们。该研究员将有许多机会,通过指导,网络,
参加会议,并有撰写拨款的经验。这位研究员将在以下时间在生物设计中心接受培训
波士顿大学在分子、细胞和组织工程方面拥有广泛的专业知识,并提出
为研究员提供跨学科和协作的环境,使其科学和专业地发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mai Ngo其他文献
Mai Ngo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mai Ngo', 18)}}的其他基金
Developing a Temporally-Regulated Gene Therapy for Therapeutic Angiogenesis
开发用于治疗性血管生成的时间调控基因疗法
- 批准号:
10535141 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
相似海外基金
Development of education and dissemination methods for psychiatric nurses to introduce complementary and alternative therapies from the physical side
开发精神科护士的教育和传播方法,从身体方面引入补充和替代疗法
- 批准号:
26463484 - 财政年份:2014
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alternative therapies for antibiotic-resistant Helicobacter pylori infection
抗生素耐药性幽门螺杆菌感染的替代疗法
- 批准号:
23590890 - 财政年份:2011
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Alternative Therapies for Benign Prostate Symptoms
良性前列腺症状的替代疗法
- 批准号:
8147503 - 财政年份:2010
- 资助金额:
$ 6.95万 - 项目类别:
Scientific evaluation of therapeutic effects and mechanism of alternative therapies using PET molecular imaging technique.
利用PET分子成像技术科学评估替代疗法的治疗效果和机制。
- 批准号:
21590754 - 财政年份:2009
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Treating Burn injuries: First-aid and alternative therapies
治疗烧伤:急救和替代疗法
- 批准号:
nhmrc : 409902 - 财政年份:2006
- 资助金额:
$ 6.95万 - 项目类别:
NHMRC Postgraduate Scholarships
PREVENTING COGNITIVE DECLINE WITH ALTERNATIVE THERAPIES
通过替代疗法预防认知能力下降
- 批准号:
7206559 - 财政年份:2005
- 资助金额:
$ 6.95万 - 项目类别:














{{item.name}}会员




