Development of ex-vivo tumor culture for systems network biology and personalized medicine
用于系统网络生物学和个性化医疗的离体肿瘤培养的开发
基本信息
- 批准号:10830630
- 负责人:
- 金额:$ 15.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAreaAtlas of Cancer Mortality in the United StatesAttentionBindingBioinformaticsBiological AssayBiologyBreastCaliforniaCancer CenterCatalogingCatalogsCell LineCell ProliferationClinicalClustered Regularly Interspaced Short Palindromic RepeatsCollectionComplexCopy Number PolymorphismCryoelectron MicroscopyDataDependenceDevelopmentDiseaseExpert SystemsFDA approvedFacultyFundingGene MutationGenesGenetic DiseasesGenetic ScreeningHead and Neck NeoplasmsHeterogeneityImageImmunofluorescence MicroscopyInformation NetworksInstitutionLaboratoriesLogicLungMalignant NeoplasmsMapsMindMissionModelingMolecularMutationNCI Center for Cancer ResearchNeoplasm MetastasisOther GeneticsPIK3CA genePathogenesisPathway interactionsPatientsPatternPhenotypePhysiologicalPoint MutationPrincipal InvestigatorProliferatingProteinsResearch PersonnelResourcesScienceScientistSisterSquamous CellStructural ModelsStructureSystemSystems BiologyTP53 geneTechniquesThe Cancer Genome AtlasTimeTrainingTranslatingUniversitiesanticancer researchcancer cellcancer genomecell motilitycombinatorialcomputerized toolsdeep learningdriver mutationdrug response predictionexperimental studygenome-wideinterestknockout genemolecular modelingmouse modelneoplastic cellnext generationpatient responsepersonalized medicineprecision medicineprecision oncologypressureprotein complexrare cancerscale upsimulationspatiotemporaltraining opportunitytransfer learningtreatment responsetumortumor initiation
项目摘要
THE CANCER CELL MAP INITIATIVE v2.0
OVERALL SUMMARY
The Cancer Genome Atlas and sister projects have now sequenced over 20,000 tumor genomes, providing a
catalog of gene mutations, copy number variants and other genetic alterations associated with cancer. These
data have made it clear that every cancer is a distinct genetic disease, with tumors that look physiologically
similar often driven by patterns of gene mutations that are strikingly different. Due to this molecular heterogeneity,
it is typically unclear what are the key driver mutations or dependencies in a given cancer and how these
influence pathogenesis and response to therapy. One key observation for interpreting tumor genomes is that the
many rare tumor mutations can be shown to converge on common molecular networks. Based on this premise
we created the Cancer Cell Map Initiative (CCMI), whose mission is to create comprehensive maps of cancer
molecular networks and to use these maps in intelligent systems for personalized therapy. In 2017, the CCMI
was funded as an NCI U54 Research Center for Cancer Systems Biology, integrating expertise in network
mapping, bioinformatic analysis and cancer research from leading academic laboratories at two University of
California campuses (UCSF and UCSD). We have since generated comprehensive networks of protein
interactions in breast and head-and-neck tumor cells and, from these data, identified several hundred protein
complexes under selective mutational pressure in cancer (NeST v1.0). We have piloted deep learning systems
(DCell, DrugCell and TCRP) that can use this protein network information to translate a patient’s tumor mutation
profile to a predicted drug response, including FDA-approved and exploratory agents. We have implemented a
rich portfolio of training opportunities and, leveraging UC institutional support, expanded the CCMI consortium
to include more than a dozen faculty at UC and, most recently, Stanford. In the next five years, the CCMI will
seek to: (1) Generate comprehensive protein interaction networks centered on key cancer driver genes in lung
squamous cells (in healthy and diseased states) as well as the PIK3CA and TP53 pathways, which are central
to many tumor types; (2) Systematically extend the CCMI collection of cancer protein interaction data with protein
immunofluorescent imaging and cryo-electron microscopy to formulate multi-scale cancer cell maps; (3) Dissect
the functional logic of these networks and maps by systematic genetic screening experiments in the same tumor
types and pathways, using a panel of scalable cell proliferation, phenotype and pathway readouts; (4)
Significantly advance and harden our DrugCell interpretable deep learning system for cancer precision medicine;
(5) Train the current and next generation of scientists in network biology and its applications to cancer research;
and (6) Continue to build a cadre of leading investigators to expand CCMI into a global coordinated partnership.
癌细胞图谱计划v2.0
总体总结
癌症基因组图谱和姊妹项目现在已经对20,000多个肿瘤基因组进行了测序,提供了一个
与癌症相关的基因突变、拷贝数变异和其他基因改变的目录。这些
数据表明,每一种癌症都是一种不同的遗传性疾病,肿瘤看起来像是生理上的。
相似的通常是由截然不同的基因突变模式驱动的。由于这种分子的异质性,
通常还不清楚特定癌症中的关键驱动因素突变或依赖关系是什么,以及这些因素是如何
影响发病机制和治疗反应。解释肿瘤基因组的一个关键观察是
许多罕见的肿瘤突变可以被证明聚集在共同的分子网络上。基于这一前提
我们创建了癌症细胞地图倡议(CCMI),其使命是创建全面的癌症地图
分子网络,并在智能系统中使用这些地图进行个性化治疗。2017年,CCMI
被资助为NCI U54癌症系统生物学研究中心,整合网络中的专业知识
地图绘制、生物信息学分析和癌症研究-来自两所大学领先的学术实验室
加州大学(加州大学旧金山分校和加州大学洛杉矶分校)。自那以后,我们已经产生了全面的蛋白质网络
乳腺和头颈部肿瘤细胞之间的相互作用,并从这些数据中识别出数百种蛋白质
癌症中选择性突变压力下的复合体(Nest v1.0)。我们已经试行了深度学习系统
(dCell、DrugCell和TCRP)可以使用这种蛋白质网络信息来翻译患者的肿瘤突变
对预测的药物反应的简介,包括FDA批准的和试探性药物。我们已经实施了一个
丰富的培训机会组合,并利用UC机构支持,扩大了CCMI财团
包括加州大学十几名教职员工,最近还有斯坦福大学。在未来五年,CCMI将
寻求:(1)建立以肺癌关键致癌基因为中心的全面蛋白质相互作用网络
鳞状细胞(在健康和疾病状态下)以及PIK3CA和TP53通路,这是中心
到多种肿瘤类型;(2)系统地扩展了癌症蛋白质与蛋白质相互作用数据的CCMI收集
免疫荧光成像和冷冻电子显微镜绘制多尺度癌细胞图谱;(3)解剖
在同一肿瘤中进行系统基因筛查实验的这些网络和图谱的功能逻辑
类型和途径,使用一组可扩展的细胞增殖、表型和途径读数;(4)
显著提高和强化我们的DrugCell可解释的癌症精确医学深度学习系统;
(5)培养网络生物学及其在癌症研究中的应用的当代和下一代科学家;
(6)继续建设一支领导调查队伍,将CCMI扩展为全球协调伙伴关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trey Ideker其他文献
Trey Ideker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trey Ideker', 18)}}的其他基金
Next generation massively multiplexed combinatorial genetic screens
下一代大规模多重组合遗传筛选
- 批准号:
10587354 - 财政年份:2023
- 资助金额:
$ 15.23万 - 项目类别:
Core 2: Software Infrastructure for Network Models and Cell Maps
核心 2:网络模型和小区地图的软件基础设施
- 批准号:
10704622 - 财政年份:2022
- 资助金额:
$ 15.23万 - 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
- 批准号:
10704611 - 财政年份:2022
- 资助金额:
$ 15.23万 - 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
- 批准号:
10525590 - 财政年份:2022
- 资助金额:
$ 15.23万 - 项目类别:
Core 2: Software Infrastructure for Network Models and Cell Maps
核心 2:网络模型和小区地图的软件基础设施
- 批准号:
10525593 - 财政年份:2022
- 资助金额:
$ 15.23万 - 项目类别:
CYTOSCAPE: AN ECOSYSTEM FOR NETWORK GENOMICS
CYTOSCAPE:网络基因组学的生态系统
- 批准号:
10411738 - 财政年份:2022
- 资助金额:
$ 15.23万 - 项目类别:
Cytoscape: A Modeling Platform for Biomolecular Networks
Cytoscape:生物分子网络建模平台
- 批准号:
10415596 - 财政年份:2021
- 资助金额:
$ 15.23万 - 项目类别:
Cytoscape: A Modeling Platform for Biomolecular Networks
Cytoscape:生物分子网络建模平台
- 批准号:
10166303 - 财政年份:2020
- 资助金额:
$ 15.23万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 15.23万 - 项目类别:
Standard Grant