Predicting earliest safe extubation time in pediatric patients
预测儿科患者最早安全拔管时间
基本信息
- 批准号:10832789
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAreaArtificial IntelligenceBreathingCaliforniaCaringCharacteristicsChildChild CareChildhoodClinicalClinical InformaticsClinical ResearchClinical SkillsCompetenceConsensusCritically ill childrenDataData ScienceData ScientistData SetDecision MakingDeliriumDevelopmentEffectivenessElectronic Health RecordEventFaceFailureFoundational SkillsFutureGoalsGuidelinesHealthHealth Care CostsHealthcareHospitalized ChildHourHumanIntubationJudgmentKnowledgeLength of StayLightLiquid substanceLung diseasesMachine LearningMechanical ventilationMedicalMentorsMentorshipMethodologyMethodsMissionModelingMorbidity - disease rateNational Heart, Lung, and Blood InstituteOccupationsPatient CarePatientsPediatric Intensive Care UnitsPerformancePhysiciansPhysiologicalPneumoniaProbabilityProcessProtocols documentationROC CurveReadinessReportingResearchResearch PersonnelResourcesRespiratory DiseaseRespiratory FailureRespiratory distressSafetySan FranciscoSpecificitySurveysTestingTimeTrainingTranslatingTubeUniversitiesVariantVentilatorcareerclinical practicecostcritical care nursingdesignexperiencehigh dimensionalityhigh riskimprovedinpatient servicelung injurymachine learning algorithmmachine learning modelmodel buildingmodel developmentmortalitynovelpatient subsetspediatric patientspoor health outcomepredictive modelingpredictive toolsprospective testrate of changeskillsstandardized carestatistical and machine learningsupport toolstechnology validationtoolwasting
项目摘要
PROJECT SUMMARY
Determining when to extubate patients in the pediatric intensive care unit (PICU) is a challenge clinicians face
each day. Consensus guidelines for pediatric extubation are lacking and, in light of this, most pediatric studies
conclude that the decision to extubate relies ultimately on clinician judgment. The resulting variation in care
translates to increased morbidity, mortality, and costs that arise from both unnecessary ventilator days from
delayed extubation and re-intubation from extubation failure. The long-term goal of this project is to harness
the power of artificial intelligence to optimize identification of extubation readiness in the PICU. The objective
of this proposal is to create machine learning models using a large electronic health record (EHR)
dataset to predict when to extubate patients and to estimate how many ventilator days could be saved
if such models were used in practice. Deploying such models in the EHR as a real-time decision support
tool could safely shorten extubation times by decreasing variation in care and identifying subsets of patients for
earlier, safe extubation. This study will use EHR data from mechanically ventilated PICU patients at the
University of California, San Francisco to build models to estimate extubation readiness for PICU patients (Aim
1). The investigators will apply human factor design principles, which aim to increase usefulness of tools and
help humans do their jobs with higher reliability, to improve model performance. We will use a novel method,
expert-augmented machine learning, to incorporate clinician knowledge directly into our models (Aim 2). The
performance of the models will be evaluated with standard metrics, as well as with an estimate of number of
ventilator days saved, reflecting the potential health impact (Aim 3). This project will advance extubation
practices for critically ill children, yielding a predictive tool ready for prospective testing in the EHR that moves
toward delivering high reliability healthcare for patients with respiratory failure. This research will advance
NHLBI's mission of using data science to improve treatment of patients with lung diseases. The proposed
training, guided by an expert mentorship team, will enrich the applicant's knowledge of and skills in data
science, machine learning and prediction, and clinical informatics. The content expertise, research
competency, and training in quantitative methods the applicant will receive will prepare her well to improve
scientific knowledge and clinical practice in her career as an independent researcher.
项目总结
决定何时给儿科重症监护病房(PICU)的患者拔管是临床医生面临的挑战
每一天。儿科拔管缺乏共识指南,有鉴于此,大多数儿科研究
结论是拔管的决定最终取决于临床医生的判断。由此产生的护理差异
转化为增加发病率、死亡率和成本,这两个不必要的呼吸机日从
拔管失败后延迟拔管和重新插管。这个项目的长期目标是利用
人工智能在优化PICU拔管准备情况识别方面的力量。目标是
这项提议的目的是使用大型电子健康记录(EHR)创建机器学习模型
用于预测患者何时拔管并估计可节省多少呼吸机天数的数据集
如果这样的模型在实践中使用。在电子病历中部署此类模型作为实时决策支持
Tool可以安全地缩短拔管时间,因为它减少了护理的差异,并确定了患者的亚群
早些时候,安全拔管。这项研究将使用来自机械通气的PICU患者的EHR数据
加州大学旧金山分校建立模型以评估PICU患者的拔管准备情况(AIM
1)。调查人员将应用人的因素设计原则,旨在增加工具和
帮助人类以更高的可靠性完成他们的工作,以提高模型性能。我们将使用一种新的方法,
专家增强的机器学习,将临床医生的知识直接纳入我们的模型(目标2)。这个
模型的性能将使用标准指标以及估计的数量进行评估
节省呼吸机天数,反映潜在的健康影响(目标3)。该项目将推进拔管。
针对危重儿童的实践,产生了一种预测工具,可用于在移动的EHR中进行预期测试
为呼吸衰竭患者提供高可靠性的医疗保健。这项研究将会取得进展
NHLBI的使命是使用数据科学来改善肺部疾病患者的治疗。建议数
在专家指导团队的指导下,培训将丰富申请人在数据方面的知识和技能
科学、机器学习和预测以及临床信息学。内容专业知识、研究
应聘者将接受的能力和量化方法的培训将为她的进步做好准备
在独立研究人员的职业生涯中,她的科学知识和临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Digitale其他文献
Jean Digitale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Digitale', 18)}}的其他基金
Predicting earliest safe extubation time in pediatric patients
预测儿科患者最早安全拔管时间
- 批准号:
10540299 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
Predicting earliest safe extubation time in pediatric patients
预测儿科患者最早安全拔管时间
- 批准号:
10616552 - 财政年份:2021
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Research Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant