Building Reinforcement Learning and Normative Models in the Cloud

在云中构建强化学习和规范模型

基本信息

  • 批准号:
    10825877
  • 负责人:
  • 金额:
    $ 24.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

The parent proposal aims to address a critical need in the field of precision psychiatry by identifying a complex behavior, such as Reinforcement Learning based Decision Making (RLDM), which is impaired across various psychiatric disorders and adopting a computational framework to explain heterogeneity at an individual level. By building normative models of RLDM constructs and charting heterogeneity at the individual level, the proposal aims to advance precision medicine. The main goals of this proposal are to (1) parse RLDM sub- processes into mathematically-defined parameters in a large sample using a diverse set of tasks; (2) assess test-retest reliability of these parameters; and finally (3) build normative models of the parameters and chart the heterogeneity at the level of the individual. We will reach these goals by collecting behavioral data from a diverse set of tasks in a large community sample (n=1000) and 500 of these participants will complete the tasks a second time within two weeks to enable us to assess test-retest reliability of the computationally-derived RLDM parameters. The framework that was proposed in the parent R21 involved deploying 6 RLDM tasks online and collecting data using one of the cloud/cloud-like services such as AWS, Pavlovia or testmybrain. We were then planning on downloading all the behavioral data and running our RLDM and normative models in our local compute cluster, due to limited funds available in the parent R21 to use cloud computing. In this proposal, we aim to conduct the entirety of our project on the cloud with the funds provided by this supplement. The entire parent project could benefit tremendously from having access to the cloud resources – from online tasks deployment, data collection and automated large scale computationally intensive data analyses. Running RLDM models and creating normative charts are computationally intensive and require significant resources. Our plan was to collect data from six tasks, run three to five RLDM models on each task, estimate RLDM parameters and develop normative models of the eight most stable RLDM parameters in 1000 participants. However, with the use of affordable cloud computing through this supplement, we will be able to not only vastly reduce computational time (which would be very slow on our computing cluster that is a shared resource across the Hospital), but this will also give us an opportunity to explore complex RLDM models and test novel estimation techniques. Additionally, by reducing the burden on local compute clusters and costs (budgeted in our parent grant), we might be able to increase our originally proposed sample size, thereby enhancing the robustness of the normative models with data from a larger sample size. With the entire project on the cloud, there will be seamless integration from data collection to data analyses and statistical interpretation, which will improve the overall efficiency of the project.
家长提案的目的是解决精确精神病学领域的一个关键需求,通过确定一个

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

POORNIMA KUMAR其他文献

POORNIMA KUMAR的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('POORNIMA KUMAR', 18)}}的其他基金

Building normative models of Reinforcement Learning Decision Making Behavior
建立强化学习决策行为的规范模型
  • 批准号:
    10572615
  • 财政年份:
    2022
  • 资助金额:
    $ 24.58万
  • 项目类别:
Influence of GABA on reinforcement learning in individuals with current and remitted depression
GABA 对当前和缓解抑郁症患者强化学习的影响
  • 批准号:
    9085456
  • 财政年份:
    2015
  • 资助金额:
    $ 24.58万
  • 项目类别:
Influence of GABA on reinforcement learning in individuals with current and remitted depression
GABA 对当前和缓解抑郁症患者强化学习的影响
  • 批准号:
    8969749
  • 财政年份:
    2015
  • 资助金额:
    $ 24.58万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.58万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了