Building normative models of Reinforcement Learning Decision Making Behavior
建立强化学习决策行为的规范模型
基本信息
- 批准号:10572615
- 负责人:
- 金额:$ 24.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAgeBayesian MethodBehaviorBehavior DisordersBehavioralCase/Control StudiesClinicalCommunitiesComplexComputer ModelsConflict (Psychology)DataData ReportingDecision MakingDiagnosisDiagnosticDiseaseEnvironmentEthnic OriginFailureFamilyGenderGoalsGrainGrowthHeterogeneityImpairmentIndividualLearningLinkLocationLongevityMapsMathematicsMeasuresMental disordersModelingNormal RangeOutcomeParticipantPatient Self-ReportPatientsPediatricsPopulationProcessPsychiatryPsychological reinforcementPsychopathologyResearchResearch Domain CriteriaRiskSample SizeSamplingShapesStimulusStratificationStructureSymptomsTestingTimeUncertaintyUpdateagedclinical phenotypeclinical practicecohortcomputer frameworkcostdiscountingflexibilityimprovedmathematical modelnovelprecision medicinepsychiatric symptomsuccessvirtual
项目摘要
The main objective in the field of psychiatry is to be able to treat patients at an individual level. To reach this goal
of precision medicine, large scale initiatives such as the RDoC have been developed to find new ways to parse
heterogeneity in psychiatric disorders. Their success has been slow partly due to a slow transition away from
case-control studies based on diagnoses and limitations due to small sample size. Therefore, there is a critical
need to find alternative solutions at an affordable cost. One strategy is to identify a complex behavior such as
Reinforcement Learning based decision making (RLDM) that is impaired across various psychiatric disorders
and adopt a computational framework to explain heterogeneity at an individual level. RLDM is a multifaceted
construct involving several sub-processes ranging from estimating values of different options in the environment
(valuation), accumulating evidence for these options (sequential sampling), choosing the best option (explore-
exploit behavior), estimating the outcome value (salience attribution) and lastly integrating relevant information
about outcomes and updating the value of stimuli (learning rate). These sub-processes can be quantified by
utilizing computational models. However, prior to building normative models of these RLDM constructs that can
be potentially utilized in clinical practice, it is critical to assess the reliability of these RLDM model-derived
parameters to avoid translational failures. Therefore, our main goals of this proposal are to (1) parse RLDM sub-
processes into mathematically-defined parameters in a large sample using a diverse set of tasks; (2) assess
test-retest reliability of these parameters; and finally (3) build normative models of the parameters and chart the
heterogeneity at the level of the individual. To achieve this goal, we will acquire behavioral data from six RL
tasks, including delay and effort discounting, probabilistic learning, virtual patch foraging, Pavlovian instrumental
transfer and approach-avoid conflict tasks. These tasks are each optimized to measure at least two of the RL
sub-processes separately. We will collect behavioral data and self-report assessments from a community sample
from 1000 participants (aged 18-85). To estimate test-retest reliability of RLDM parameters, we will invite 500
healthy participants from this sample to complete the session again in one week’s time. First, we will apply start-
of-art computational models to quantify RLDM behavior in each subject. Second, we will calculate the test-retest
reliability of these parameters. Third, we will build normative models to link each of the RLDM construct with age
and calculate each subject’s deviation from the norm. Lastly, we will conduct soft clustering on these deviations
to identify clusters and investigate their differences in psychopathology and general functioning.
精神病学领域的主要目标是能够在个体层面上治疗患者。实现这一目标
在精准医学领域,已经开发了诸如RDoC之类的大规模计划,以寻找新的方法来解析
精神疾病的异质性他们的成功一直缓慢,部分原因是从
基于诊断的病例对照研究,由于样本量小而存在局限性。因此,有一个关键的
我们需要以负担得起的成本找到替代解决方案。一种策略是识别一种复杂的行为,
基于强化学习的决策(RLDM)在各种精神疾病中受损
并采用计算框架来解释个体水平上的异质性。RLDM是一个多方面的
一个涉及多个子过程的结构,从估计环境中不同选项的价值
(估值),为这些选项积累证据(序贯抽样),选择最佳选项(探索-
利用行为),估计结果值(显著性归因),最后整合相关信息
关于结果和更新刺激值(学习率)。这些子过程可以通过以下方式量化:
利用计算机模型。然而,在建立这些RLDM结构的规范模型之前,
可能在临床实践中使用,评估这些RLDM模型衍生的可靠性至关重要。
参数以避免转换失败。因此,我们的主要目标是(1)解析RLDM子
使用一组不同的任务,在大样本中将过程转化为精确定义的参数;(2)评估
(3)建立各参数的规范化模型,绘制各参数的重测信度图,
个体水平的异质性。为了实现这一目标,我们将从六个RL获取行为数据,
任务,包括延迟和努力折扣,概率学习,虚拟补丁觅食,巴甫洛夫工具
转移和接近避免冲突的任务。这些任务每个都被优化以测量至少两个RL
子进程分开。我们将从社区样本中收集行为数据和自我报告评估
1000名参与者(18-85岁)。为了估计RLDM参数的重测信度,我们将邀请500名
健康的参与者在一周的时间内再次完成会议。首先,我们将开始-
最先进的计算模型来量化每个受试者的RLDM行为。第二,我们将计算重测
这些参数的可靠性。第三,我们将建立规范模型,将RLDM结构中的每一个与年龄联系起来
并计算出每个受试者与标准的偏差。最后,我们将对这些偏差进行软聚类
以确定集群,并调查他们在精神病理学和一般功能的差异。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
POORNIMA KUMAR其他文献
POORNIMA KUMAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('POORNIMA KUMAR', 18)}}的其他基金
Building Reinforcement Learning and Normative Models in the Cloud
在云中构建强化学习和规范模型
- 批准号:
10825877 - 财政年份:2022
- 资助金额:
$ 24.6万 - 项目类别:
Influence of GABA on reinforcement learning in individuals with current and remitted depression
GABA 对当前和缓解抑郁症患者强化学习的影响
- 批准号:
9085456 - 财政年份:2015
- 资助金额:
$ 24.6万 - 项目类别:
Influence of GABA on reinforcement learning in individuals with current and remitted depression
GABA 对当前和缓解抑郁症患者强化学习的影响
- 批准号:
8969749 - 财政年份:2015
- 资助金额:
$ 24.6万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Fellowship
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 24.6万 - 项目类别:
Research Grant