MUST Data Science Research Hub (MUDSReH) - Democratized Trusted Research Environment (dTRE)
MUST 数据科学研究中心 (MUDSReH) - 民主化可信研究环境 (dTRE)
基本信息
- 批准号:10826921
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccountingAddressAfricaAfrica South of the SaharaAfricanArtificial IntelligenceAttentionCalibrationCancer DetectionCellular PhoneCentral AfricaCervicalCervix UteriClinicalClinical DataCollaborationsCollectionComputerized Medical RecordDataData AnalysesData LinkagesData ScienceData SecurityDemocracyDermatologyDevelopmentDiabetic RetinopathyDiagnosisDiseaseEastern AfricaEcosystemEnsureEnvironmentEquipmentEye diseasesFosteringFundingFutureGeneral HospitalsGhanaGoalsGrantHealthHealth PolicyHealth PrioritiesHealth systemHealthcareImageImage AnalysisIndividualInstitutionKenyaKnowledgeLabelMachine LearningMacular degenerationMalignant neoplasm of cervix uteriManaged CareMassachusettsMedical ImagingMethodologyMethodsMissionNongovernmental OrganizationsOphthalmologistOutcomePathway interactionsPatientsPolicy MakerPolicy MakingPopulationPositioning AttributePosterior eyeball segment structureQuality ControlRadiology SpecialtyResearchResearch PersonnelResearch Project GrantsResource AllocationResourcesRoleScienceSiteSouthern AfricaSurveysTechniquesTechnologyTrainingTranslatingTrustUgandaUnited States National Institutes of HealthUniversitiesWorkalgorithm developmentartificial intelligence algorithmcare deliveryclinical careclinical databaseclinical diagnosisclinical practiceclinically relevantcollegecommunity organizationscomputerized data processingdata exchangedata harmonizationdata infrastructuredata integrationdata managementdata qualitydesignfundus imaginghealth care deliveryimplementation scienceimprovedinnovationmultidisciplinaryopen dataprogramsquality assuranceskillssymposiumtechnology diffusionuptake
项目摘要
Overall Research Plan Project Summary. Significance. Data science hold great promise for sub-Saharan
Africa, yet research capacity and appropriate training are limited. Medical images are particularly exciting for
data science in this setting given their ability to facilitate care delivery across healthcare cadres. Efforts to
translate the knowledge gained through data science into improved clinical care can be fostered through
implementation science. Strategic multi-disciplinary, multi-institutional partnerships will be key for the
development and ultimate impact of data science for African-based solutions. Innovation. This proposal is
innovative in 1) its use of data science with medical images for advancing clinical care, and 2) integration of
data science with implementation science to promote clinical impact. Approach. The Mbarara University Data
Science Research Hub (MUDSReH) in Uganda will use multiple technologies to improve the capture of
medical images and employ key data science methods, such as machine learning and artificial intelligence, to
expand their utilization in sub-Saharan Africa. Clinical impact will be strengthened through implementation
science methods. Formal training will be available for both data science and implementation science, and
ongoing expansion of efforts will be promoted through regional summits and collaboration. The two initial
research projects—optimized posterior fundus imaging to diagnose posterior segment eye disease and mobile-
phone based cervical images to detect cancer—will involve partnerships with the College of Ophthalmologists
of Eastern, Central and Southern Africa in Kenya and the Kwame Nkrumah University of Science and
Technology in Ghana, respectively. Massachusetts Institute of Technology will provide technical support for
data management and analysis, and Massachusetts General Hospital will support the use of implementation
science and other relevant content areas for individual research projects. Each project will work with local
Ministries of Health, community-based organizations, and/or technology partners to advance the mission of
harnessing medical images for improved clinical outcomes and impact. Our specific aims are as follows:
1. To integrate all partnering academic institutions, technology companies, and non-governmental
organizations to advance data science for medical imaging. All partners will contribute to a common
infrastructure for data processing and analysis. We will establish both the administrative and technical
mechanisms for data exchange, accounting for necessary data security and quality assurance and control.
We will further create pathways for facile expansion to include additional research projects involving
medical imaging (e.g., in radiology and dermatology) at multiple African institutions.
2. To integrate implementation science with data science to advance clinical impact. All research
projects in the MUDSReH will include implementation science methodologies to ensure the developed
technology reaches the end user in practical ways that meet local needs and priorities.
总体研究计划项目总结。的意义。数据科学为撒哈拉以南地区带来了巨大的希望
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Anthony G Celi其他文献
Leo Anthony G Celi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Anthony G Celi', 18)}}的其他基金
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10312539 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10490315 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10678687 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: