Critical Care Informatics

重症监护信息学

基本信息

项目摘要

Abstract This is a renewal application for the Critical Care Informatics grant (NIBIB R01 EB017205) that was awarded to the Laboratory for Computational Physiology (LCP) in 2014. This grant has supported the development of the Medical Information Mart for Intensive Care (MIMIC) research database, which is a de-identified database for research and health data science education around the world. We aim to address the foremost issues in machine learning in healthcare today, focusing on health disparities, algorithmic bias, and understanding the barriers to effective and equitable implementation of algorithmic models. Our proposal will enrich MIMIC with new data types and sources, including publicly available population health datasets, advance progress on a federated critical care dataset, and add a new module with COVID-19 specific ontology and codes. Our research will build on prior findings showing the pervasiveness of hidden socio-demographic bias in data sources including clinical data, medical images, and narrative patient documentation. Health care data science ultimately exists for the purpose of improving human health. Yet, extremely few models published in research papers have impacted clinical care due to challenges in implementation. In layman’s terms, this means knowledge gained about tests and treatments leads to the best possible outcome for every patient in the intensive care unit (ICU) regardless of demographic. We will conduct a rigorous qualitative research study to better understand the barriers faced by key stakeholders - clinicians and data scientists - in the development and implementation of equity-centered artificial intelligence. This information will be used to develop guidelines to integrate with implementation science frameworks to support the effective implementation of equitable AI in clinical settings. With these aims, MIMIC will significantly expand the relevance of this research resource to a greater diversity of investigators including those in the social and behavioral sciences and public health and continue to be a resource for clinical research and increasingly sophisticated model development, advancing our understanding of critical issues of fairness and equity in healthcare, data science, and the broader society.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leo Anthony G Celi其他文献

Leo Anthony G Celi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leo Anthony G Celi', 18)}}的其他基金

MUST Data Science Research Hub (MUDSReH) - Democratized Trusted Research Environment (dTRE)
MUST 数据科学研究中心 (MUDSReH) - 民主化可信研究环境 (dTRE)
  • 批准号:
    10826921
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
  • 批准号:
    10312539
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
  • 批准号:
    10490315
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
  • 批准号:
    10678687
  • 财政年份:
    2021
  • 资助金额:
    $ 39.75万
  • 项目类别:
Critical Care Informatics
重症监护信息学
  • 批准号:
    9116842
  • 财政年份:
    2014
  • 资助金额:
    $ 39.75万
  • 项目类别:
Critical Care Informatics
重症监护信息学
  • 批准号:
    10020401
  • 财政年份:
    2014
  • 资助金额:
    $ 39.75万
  • 项目类别:
Critical Care Informatics
重症监护信息学
  • 批准号:
    10251943
  • 财政年份:
    2014
  • 资助金额:
    $ 39.75万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 39.75万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 39.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了