Critical Care Informatics
重症监护信息学
基本信息
- 批准号:10772272
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsArtificial IntelligenceAwardBehavioral SciencesCOVID-19CaringClassificationClinicalClinical DataClinical ResearchClipCodeCommunity HealthCritical CareDataData ElementData ScienceData ScientistData SetData SourcesDatabasesDetectionDevelopmentDiscriminationDocumentationEducationElectronic Health RecordEngineeringEquityEthicsEthnic OriginFaceFundingGrantGuidelinesHealthHealth SciencesHealthcareHospitalsHumanImageInformaticsIntensive CareIntensive Care UnitsKnowledgeKoreansLaboratoriesLearningLinkMachine LearningMapsMasksMedicalMedical ImagingMedicineMethodsModalityModelingNational Institute of Biomedical Imaging and BioengineeringOntologyOutcomePaperPatientsPhysiologyPortugueseProcessProfessional OrganizationsPublic HealthPublic Health Applications ResearchPublic Health InformaticsPublicationsPublishingQualitative ResearchQuality of CareRaceResearchResearch PersonnelResourcesShapesSocial SciencesSocietiesSourceStudentsTechniquesTest ResultTestingTextbooksThoracic RadiographyTranslatingUnited StatesUniversitiesUniversity HospitalsWritingalgorithmic biasbaseclinical careclinical centerclinical predictorsdata science educationdesigneHealthglobal healthhealth care settingshealth datahealth disparityhealth equityimplementation frameworkimprovedmHealthmachine learning algorithmmachine learning methodmodel developmentmortalitymultidisciplinarynovel diagnosticsnovel therapeutic interventiononline courseoutcome disparitiesoutreachpandemic diseasepopulation basedpopulation healthpreventradiological imagingresearch studysecondary analysissocial health determinantssociodemographicssuccess
项目摘要
Abstract
This is a renewal application for the Critical Care Informatics grant (NIBIB R01 EB017205) that was awarded to
the Laboratory for Computational Physiology (LCP) in 2014. This grant has supported the development of the
Medical Information Mart for Intensive Care (MIMIC) research database, which is a de-identified database for
research and health data science education around the world. We aim to address the foremost issues in machine
learning in healthcare today, focusing on health disparities, algorithmic bias, and understanding the barriers to
effective and equitable implementation of algorithmic models. Our proposal will enrich MIMIC with new data
types and sources, including publicly available population health datasets, advance progress on a federated
critical care dataset, and add a new module with COVID-19 specific ontology and codes. Our research will build
on prior findings showing the pervasiveness of hidden socio-demographic bias in data sources including clinical
data, medical images, and narrative patient documentation. Health care data science ultimately exists for the
purpose of improving human health. Yet, extremely few models published in research papers have impacted
clinical care due to challenges in implementation. In layman’s terms, this means knowledge gained about tests
and treatments leads to the best possible outcome for every patient in the intensive care unit (ICU) regardless
of demographic. We will conduct a rigorous qualitative research study to better understand the barriers faced by
key stakeholders - clinicians and data scientists - in the development and implementation of equity-centered
artificial intelligence. This information will be used to develop guidelines to integrate with implementation science
frameworks to support the effective implementation of equitable AI in clinical settings. With these aims, MIMIC
will significantly expand the relevance of this research resource to a greater diversity of investigators including
those in the social and behavioral sciences and public health and continue to be a resource for clinical research
and increasingly sophisticated model development, advancing our understanding of critical issues of fairness
and equity in healthcare, data science, and the broader society.
抽象的
这是重新护理信息学补助金(Nibib R01 EB017205)的续签申请
2014年计算生理学实验室(LCP)。该赠款支持了
重症监护(MIMIC)研究数据库的医疗信息MART,这是一个被取消识别的数据库
全球研究和健康数据科学教育。我们旨在解决机器中最重要的问题
当今的医疗保健学习,专注于健康分布,算法偏见,并了解
算法模型的有效实施。我们的建议将丰富模仿新数据
类型和来源,包括公开可获得的人口健康数据集
重症监护数据集,并添加一个具有COVID-19特定本体论和代码的新模块。我们的研究将建立
关于先前的发现,显示了隐藏的社会人口统计学偏见在包括临床在内的数据源中的普遍性
数据,医学图像和叙事性患者文档。医疗数据科学最终存在于
改善人类健康的目的。然而,在研究论文中发表的极少数模型影响了
由于实施挑战而引起的临床护理。用外行的话来说,这意味着知识获得了测试
无论如何
人群。我们将进行严格的定性研究,以更好地了解
主要利益相关者 - 临床医生和数据科学家 - 以股权为中心的发展和实施
人工智能。该信息将用于制定与实施科学集成的准则
支持在临床环境中有效实施公平AI的框架。以这些目的,模仿
将大大扩展该研究资源的相关性,包括
那些从事社会和行为科学和公共卫生的人,并继续成为临床研究的资源
以及越来越复杂的模型开发,促进了我们对公平关键问题的理解
以及医疗保健,数据科学和更广泛的社会的公平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Anthony G Celi其他文献
Leo Anthony G Celi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Anthony G Celi', 18)}}的其他基金
MUST Data Science Research Hub (MUDSReH) - Democratized Trusted Research Environment (dTRE)
MUST 数据科学研究中心 (MUDSReH) - 民主化可信研究环境 (dTRE)
- 批准号:
10826921 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10312539 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10490315 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10678687 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别: