Critical Care Informatics
重症监护信息学
基本信息
- 批准号:10020401
- 负责人:
- 金额:$ 39.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAccident and Emergency departmentAddressAdmission activityAdoptionAdultArchivesBostonCaringClinicalClinical DataClinical ResearchCodeCollaborationsCommunicationCommunitiesComputer softwareCountryCredentialingCritical CareCritical IllnessDataData CollectionData SetData SourcesDatabasesDevelopmentDiagnostic radiologic examinationDiseaseEducational workshopElectronic Health RecordFundingGuidelinesHealthcareHome environmentHospitalsImageIndustryInformaticsInfrastructureInstitutionIntensive CareIntensive Care UnitsInternationalInterventionInvestigationIsraelJointsKnowledgeLaboratoriesLicensingLinkLondonMedicalMedical TechnologyMedical centerModificationOperating RoomsParis, FrancePatient CarePatientsPerformancePharmaceutical TechnologyPhysiologicalPhysiologyPopulationProcessReproducibilityResearchResearch Project GrantsResolutionResourcesRetrospective StudiesStandardizationTechnologyThoracic RadiographyUnited StatesUniversitiesUpdateValidationaccess restrictionsbaseclinical careclinical databaseclinical decision supportdata archivedata harmonizationdata modelingdata resourcedata sharingdata standardseducation resourcesevidence basehealth dataimprovedinternational centeronline courseopen sourceprediction algorithmrepositoryresearch studystructured datasuccesssupport toolssymposiumtooltreatment effectunstructured data
项目摘要
Abstract
Critical care units are home to some of the most sophisticated patient technology within hospitals. The result-
ing data have the potential to improve our understanding of disease and to improve clinical care. Critically ill
patients are an ideal population for clinical database investigations because the value of many treatments and
interventions they receive remains largely unproven, and high-quality studies supporting or discouraging specific
practices are relatively sparse [4]. Standardized critical care guidelines currently in use are dependent on an
evidence base that is surprisingly weak considering the amount of data generated in the ICU [13].
The MIT Laboratory for Computational Physiology (LCP) developed and maintains the publicly available
Medical Information Mart for Intensive Care (MIMIC), containing highly detailed data associated with 53,423
distinct adult ICU admissions at the Beth Israel Deaconess Medical Center in Boston [21]. MIMIC is now a
widely used resource worldwide for clinical research studies, exploratory and validation analyses performed by
pharmaceutical and medical technology companies, as well as for university, conference and online courses,
tutorials and workshops.
LCP recently released the open eICU Collaborative Research Database [24] in collaboration with Philips
Healthcare, comprising de-identified clinical data associated with approximately 200,000 critical care admissions
to over two hundred hospitals throughout the United States. We now intend to expand the success of our
open-access, open-source approach to critical care research by releasing large new intra-operative, emergency
department and imaging datasets. Importantly, we have made exciting progress with the global consortium our
group is spearheading around the development of high resolution critical care databases. With our assistance,
colleagues at Oxford, London, Paris, Sao Paulo, Madrid, and Beijing have made significant progress in building
their own versions of MIMIC and transforming them into the OMOP common data model.
Multi-center research is challenging, because different institutions collect and store data in (sometimes dras-
tically) different formats. The adoption and harmonization of data standards is a critical requirement in order for
the data to be properly archived, integrated across institutions, and shared for reuse.
This proposal seeks funding to: (a) support and expand our publicly available critical care data resources into
new domains including pre-ICU care in the ED and OR, and serial chest X-ray imaging; b) develop the technical
infrastructure needed to integrate data from international critical care units; and c) conduct research aimed at
understanding and addressing the complexities of using multicenter and federated datasets in the development
of predictive and clinical decision support tools, as well as in observational retrospective studies.
抽象的
重症监护病房拥有医院内一些最先进的患者技术。结果——
数据有可能提高我们对疾病的理解并改善临床护理。病危
患者是临床数据库研究的理想人群,因为许多治疗和治疗的价值
他们接受的干预措施在很大程度上仍未得到证实,高质量的研究支持或不鼓励特定的干预措施
实践相对较少[4]。目前使用的标准化重症监护指南取决于
考虑到 ICU 生成的数据量,证据基础出人意料地薄弱 [13]。
麻省理工学院计算生理学实验室 (LCP) 开发并维护了公开可用的
重症监护医疗信息集市 (MIMIC),包含与 53,423 相关的高度详细的数据
波士顿贝斯以色列女执事医疗中心的不同成人 ICU 入院情况[21]。 MIMIC 现在是
全球广泛使用的资源,用于临床研究、探索性和验证分析
制药和医疗技术公司,以及大学、会议和在线课程,
教程和研讨会。
LCP 最近与飞利浦合作发布了开放式 eICU 协作研究数据库 [24]
医疗保健,包括与约 200,000 例重症监护入院相关的去识别化临床数据
遍及美国超过 200 家医院。我们现在打算扩大我们的成功
通过发布大量新的术中、紧急情况,以开放获取、开源的方式进行重症监护研究
部门和影像数据集。重要的是,我们与全球联盟取得了令人兴奋的进展
该小组正在带头开发高分辨率重症监护数据库。在我们的帮助下,
牛津、伦敦、巴黎、圣保罗、马德里和北京的同事们在建设
他们自己的 MIMIC 版本并将其转换为 OMOP 通用数据模型。
多中心研究具有挑战性,因为不同的机构收集和存储数据(有时是不同的)
典型地)不同的格式。采用和协调数据标准是实现数据安全的关键要求
数据要正确存档、跨机构整合并共享以供重复使用。
该提案寻求资金:(a) 支持并将我们公开可用的重症监护数据资源扩展到
新领域包括急诊室和手术室的 ICU 前护理以及连续胸部 X 射线成像; b) 开发技术
整合国际重症监护病房数据所需的基础设施; c) 开展研究旨在
理解和解决在开发中使用多中心和联合数据集的复杂性
预测和临床决策支持工具以及观察性回顾性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Anthony G Celi其他文献
Leo Anthony G Celi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Anthony G Celi', 18)}}的其他基金
MUST Data Science Research Hub (MUDSReH) - Democratized Trusted Research Environment (dTRE)
MUST 数据科学研究中心 (MUDSReH) - 民主化可信研究环境 (dTRE)
- 批准号:
10826921 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10312539 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10490315 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:
MUST Data Science Research Hub (MUDSReH)
澳门科技大学数据科学研究中心 (MUDSReH)
- 批准号:
10678687 - 财政年份:2021
- 资助金额:
$ 39.63万 - 项目类别:














{{item.name}}会员




