Molecular mechanisms of neuronal plasticity

神经元可塑性的分子机制

基本信息

  • 批准号:
    10824887
  • 负责人:
  • 金额:
    $ 1.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary Neuronal plasticity allows neurons to change the strength of their connections with each other and even to make or break connections. Plasticity is a fundamental property of neurons that underlies numerous brain functions such as learning and probably sleep, but it is also misregulated in diseases such as autism. Making stable changes in neuronal connections requires transcription and translation and an activity-dependent gene expression program is rapidly induced in response to neuronal activity. Many of the genes in this first wave of gene expression encode transcription factors that then regulate additional genes that are more directly involved in plasticity. Mutations in components of these activity-dependent programs have been associated with human cognitive disorders and psychiatric diseases, showing the importance of this pathway. We study plasticity in s-LNvs, the principal Drosophila circadian pacemaker neurons, which are ideal since changes in the morphology of their projections are predictable and happen at defined times each day. Having only 4 s-LNvs per brain hemisphere makes their projections easy to visualize, and we have the tools of Drosophila genetics to alter gene expression or neuronal activity in s-LNvs, along with expression profiles. s- LNv structural changes are driven by neuronal activity: their projections expand at dawn when s-LNvs are most excitable, and retract around dusk when s-LNvs become hyperpolarized. s-LNvs use activity-dependent gene expression to expand projections, ultimately activating Rac1 GTPase to regulate actin. We have identified a second transcriptional program that is activated by neuronal hyperpolarization and/or neuronal inactivity. This program opposes activity-dependent gene expression and leads to Rho1 GTPase activation to retract s-LNv projections. Just like activity-dependent gene expression, the first step in hyperpolarization-dependent gene expression is to transcribe a gene encoding a transcription factor – in this case Toy, a fly Pax6 orthologue. In Goal 1, we propose to understand the molecular mechanism of hyperpolarization-dependent gene expression in s-LNvs, and test if this program functions in mammals. We will also test if hyperpolarization- dependent gene expression is important in sleep, which is associated with overall synaptic downscaling. In Goal 2, we will study competition between the activity-dependent and hyperpolarization-dependent gene expression programs that likely works both transcriptionally and post-transcriptionally to ensure one program dominates. In Goal 3, we will develop a genomic-based approach to identify connections between neurons that we predict will be broadly applicable, and also to give insights into how new connections are specified at the molecular level. Overall, studying plasticity in s-LNvs should give a holistic view of plasticity that is broadly relevant across neurobiology and could identify new disease risk loci.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JUSTIN BLAU其他文献

JUSTIN BLAU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JUSTIN BLAU', 18)}}的其他基金

Molecular mechanisms of neuronal plasticity
神经元可塑性的分子机制
  • 批准号:
    10155509
  • 财政年份:
    2020
  • 资助金额:
    $ 1.08万
  • 项目类别:
Molecular mechanisms of neuronal plasticity
神经元可塑性的分子机制
  • 批准号:
    10356134
  • 财政年份:
    2020
  • 资助金额:
    $ 1.08万
  • 项目类别:
Molecular mechanisms of neuronal plasticity
神经元可塑性的分子机制
  • 批准号:
    10592864
  • 财政年份:
    2020
  • 资助金额:
    $ 1.08万
  • 项目类别:
Molecular mechanisms of neuronal plasticity
神经元可塑性的分子机制
  • 批准号:
    10583557
  • 财政年份:
    2020
  • 资助金额:
    $ 1.08万
  • 项目类别:
GEF activity in circadian pacemaker neurons
昼夜节律起搏神经元中的 GEF 活性
  • 批准号:
    8320129
  • 财政年份:
    2011
  • 资助金额:
    $ 1.08万
  • 项目类别:
GEF activity in circadian pacemaker neurons
昼夜节律起搏神经元中的 GEF 活性
  • 批准号:
    8229061
  • 财政年份:
    2011
  • 资助金额:
    $ 1.08万
  • 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
  • 批准号:
    6702228
  • 财政年份:
    2002
  • 资助金额:
    $ 1.08万
  • 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
  • 批准号:
    6474101
  • 财政年份:
    2002
  • 资助金额:
    $ 1.08万
  • 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
  • 批准号:
    6844875
  • 财政年份:
    2002
  • 资助金额:
    $ 1.08万
  • 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
  • 批准号:
    6624357
  • 财政年份:
    2002
  • 资助金额:
    $ 1.08万
  • 项目类别:

相似国自然基金

Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
  • 批准号:
    81801389
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
  • 批准号:
    81101046
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
  • 批准号:
    498289
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Operating Grants
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
  • 批准号:
    MR/X033287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Research Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
  • 批准号:
    24K09679
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Bioelectric mechanisms of brain development
职业:大脑发育的生物电机制
  • 批准号:
    2338239
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了