Molecular mechanisms of neuronal plasticity
神经元可塑性的分子机制
基本信息
- 批准号:10592864
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActinsBrainCerebral hemisphereCognition DisordersDevelopmentDiseaseDrosophila genusEnsureGene ExpressionGenesGeneticGenetic TranscriptionGenomicsGoalsGuanosine Triphosphate PhosphohydrolasesHumanLearningMammalsMental disordersMolecularMorphologyMutationNeurobiologyNeuronal PlasticityNeuronsPathway interactionsPropertySchizophreniaSleepSpecific qualifier valueSynapsesTestingTimeToyTranslationsWorkaddictionautism spectrum disorderbasecircadian pacemakerdisorder riskflyinsightnovelprogramsresponserisk varianttooltranscription factor
项目摘要
Project Summary
Neuronal plasticity allows neurons to change the strength of their connections with each other and even to
make or break connections. Plasticity is a fundamental property of neurons that underlies numerous brain
functions such as learning and probably sleep, but it is also misregulated in diseases such as autism. Making
stable changes in neuronal connections requires transcription and translation and an activity-dependent gene
expression program is rapidly induced in response to neuronal activity. Many of the genes in this first wave of
gene expression encode transcription factors that then regulate additional genes that are more directly
involved in plasticity. Mutations in components of these activity-dependent programs have been associated
with human cognitive disorders and psychiatric diseases, showing the importance of this pathway.
We study plasticity in s-LNvs, the principal Drosophila circadian pacemaker neurons, which are ideal since
changes in the morphology of their projections are predictable and happen at defined times each day. Having
only 4 s-LNvs per brain hemisphere makes their projections easy to visualize, and we have the tools of
Drosophila genetics to alter gene expression or neuronal activity in s-LNvs, along with expression profiles. s-
LNv structural changes are driven by neuronal activity: their projections expand at dawn when s-LNvs are most
excitable, and retract around dusk when s-LNvs become hyperpolarized. s-LNvs use activity-dependent gene
expression to expand projections, ultimately activating Rac1 GTPase to regulate actin. We have identified a
second transcriptional program that is activated by neuronal hyperpolarization and/or neuronal inactivity. This
program opposes activity-dependent gene expression and leads to Rho1 GTPase activation to retract s-LNv
projections. Just like activity-dependent gene expression, the first step in hyperpolarization-dependent gene
expression is to transcribe a gene encoding a transcription factor – in this case Toy, a fly Pax6 orthologue.
In Goal 1, we propose to understand the molecular mechanism of hyperpolarization-dependent gene
expression in s-LNvs, and test if this program functions in mammals. We will also test if hyperpolarization-
dependent gene expression is important in sleep, which is associated with overall synaptic downscaling. In
Goal 2, we will study competition between the activity-dependent and hyperpolarization-dependent gene
expression programs that likely works both transcriptionally and post-transcriptionally to ensure one program
dominates. In Goal 3, we will develop a genomic-based approach to identify connections between neurons that
we predict will be broadly applicable, and also to give insights into how new connections are specified at the
molecular level. Overall, studying plasticity in s-LNvs should give a holistic view of plasticity that is broadly
relevant across neurobiology and could identify new disease risk loci.
项目摘要
神经元的可塑性使神经元能够改变彼此之间连接的强度,
建立或破坏连接。可塑性是神经元的一个基本特性,
它的功能,如学习和可能的睡眠,但它也是失调的疾病,如自闭症。使
神经元连接的稳定变化需要转录和翻译以及活性依赖基因
表达程序响应于神经元活性而被快速诱导。在第一波基因突变中,
基因表达编码转录因子,然后调节其他基因,
与可塑性有关。这些活动依赖性程序的组成部分中的突变与
与人类认知障碍和精神疾病的关系,显示了这一途径的重要性。
我们研究了果蝇昼夜节律起搏神经元s-LNvs的可塑性,
它们的投影形态的变化是可预测的,并且每天在限定的时间发生。具有
每个大脑半球只有4个s-LNvs,这使得它们的投射很容易可视化,我们有工具,
果蝇遗传学改变基因表达或神经元活性的s-LNvs,沿着表达谱。- -
LNv结构变化由神经元活动驱动:它们的投射在黎明时扩大,此时s-LNv最多
兴奋,并收回黄昏时,s-LNvs变得超极化。s-LNvs使用活性依赖性基因
表达以扩大投射,最终激活Rac 1 GTdR以调节肌动蛋白。我们已经确定了一
由神经元超极化和/或神经元不活动激活的第二转录程序。这
一个程序对抗活性依赖性基因表达,并导致Rho 1 GTdR激活以收缩s-LNv
预测。就像活性依赖的基因表达一样,超极化依赖基因表达的第一步,
表达是转录一个编码转录因子的基因-在这种情况下,玩具,一个苍蝇Pax 6直向同源物。
在目标1中,我们提出了理解超极化依赖基因的分子机制,
在s-LNvs中表达,并测试该程序是否在哺乳动物中起作用。我们还要测试超极化-
依赖性基因表达在睡眠中是重要的,这与整体突触降尺度有关。在
目标二,研究活性依赖基因和超极化依赖基因之间的竞争
表达程序可能在转录和转录后都起作用,以确保一个程序
占主导地位在目标3中,我们将开发一种基于基因组的方法来识别神经元之间的连接,
我们预测将广泛适用,并深入了解新的连接是如何指定的,
分子水平。总的来说,研究s-LNvs中的可塑性应该给出一个全面的可塑性观点,
它与神经生物学相关,可以识别新的疾病风险位点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JUSTIN BLAU其他文献
JUSTIN BLAU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JUSTIN BLAU', 18)}}的其他基金
GEF activity in circadian pacemaker neurons
昼夜节律起搏神经元中的 GEF 活性
- 批准号:
8320129 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
GEF activity in circadian pacemaker neurons
昼夜节律起搏神经元中的 GEF 活性
- 批准号:
8229061 - 财政年份:2011
- 资助金额:
$ 1.17万 - 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
- 批准号:
6624357 - 财政年份:2002
- 资助金额:
$ 1.17万 - 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
- 批准号:
6702228 - 财政年份:2002
- 资助金额:
$ 1.17万 - 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
- 批准号:
6474101 - 财政年份:2002
- 资助金额:
$ 1.17万 - 项目类别:
How do vri and Pdp1 regulate cricadian rhythms?
vri 和 Pdp1 如何调节昼夜节律?
- 批准号:
6844875 - 财政年份:2002
- 资助金额:
$ 1.17万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Restoring Brain Plasticity through Sleep
通过睡眠恢复大脑可塑性
- 批准号:
24K09679 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
- 批准号:
DE240100201 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
- 批准号:
DE240100614 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Early Career Researcher Award
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Operating Grants
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
- 批准号:
BB/Y005694/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Research Grant
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
- 批准号:
MR/X033287/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 1.17万 - 项目类别:
Research Grant